• Title/Summary/Keyword: Off-site Consequence Analysis

Search Result 17, Processing Time 0.024 seconds

Development of Web-based Off-site Consequence Analysis Program and its Application for ILRT Extension (격납건물종합누설률시험 주기연장을 위한 웹기반 소외결말분석 프로그램 개발 및 적용)

  • Na, Jang-Hwan;Hwang, Seok-Won;Oh, Ji-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.219-223
    • /
    • 2012
  • For an off-site consequence analysis at nuclear power plant, MELCOR Accident Consequence Code System(MACCS) II code is widely used as a software tool. In this study, the algorithm of web-based off-site consequence analysis program(OSCAP) using the MACCS II code was developed for an Integrated Leak Rate Test (ILRT) interval extension and Level 3 probabilistic safety assessment(PSA), and verification and validation(V&V) of the program was performed. The main input data for the MACCS II code are meteorological, population distribution and source term information. However, it requires lots of time and efforts to generate the main input data for an off-site consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each site. To reduce the efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. For the source term data, the program includes the release fraction of each source term category resulting from modular accident analysis program(MAAP) code analysis and the core inventory data from ORIGEN. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so the user can select the defaulted source term data of each plant without handling source term input data.

Offsite Consequence Analysis and safety management system process integration plan of safety management system (장외영향평가 및 공정안전관리제도의 통합 안전환경관리방안에 관한 연구)

  • Kim, Dong-Jun;Lee, In-Bok;Moon, Jin-Young;Chun, Young-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.63-70
    • /
    • 2016
  • The main point of this study is to find out duplicates and differences among various regulations from different organizations. Also, it focuses on creating a reasonably unified regulation system to standardize safety & environment management. In this study, I analyzed the commonalities and the differences of two systems which are typical korean Process Safety Management System and off-site Consequence Analysis. It is confirmed that there are 25 species of overlapped material of those two systems and assessment like handling material information, facilities lists, hazardous substances and list of machine power. Process safety report focuses on onsite workers and facility protect. On the other hand, off-site Consequence Analysis focuses on design, arrangement and management of handling facility from off-site influence. I found difference two system of Enforcement purposes and way. Contradiction of Harmful information of Chemicals Control Act and occupation safety and health acts from same material. To be specific, There are no unit rule of occupation safety and health acts. so it permit inch, psi etc. But Chemicals Control Act provides that m, Mpa units. Therefore, Each regulatory duplication of items for chemicals management, standardization is writing so that you can coordinate overlapping items in the measures the need to be presented.

Off-Site Consequence Analysis for PWR and PHWR Types of Nuclear Power Plants Using MACCS II Code (MACCS II 코드를 이용한 국내 경수로 및 중수로형 원전의 소외결말분석)

  • Jeon, Ho-Jun;Chi, Moon-Goo;Hwang, Seok-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.105-109
    • /
    • 2011
  • Since a severe accident, which happens in low frequency, can cause serious damages, the interests in off-site consequence analysis for a nuclear power plant have been increased after Chernobyl, TMI and Fukushima accidents. Consequences, which are the effects on health and environment caused by released radioisotopes, are evaluated using MACCS II code based on the method of Level 3 PSA. To perform a consequence analysis for the reference plants, the input data of the code were generated such as meteorological data, population distribution, release fractions, and so on. Using these input data, acute and lifetime dose as an organ, CCDF for early fatalities and latent cancer fatalities, and average individual risk were analyzed by using MACCS II code in this study. These results might contribute to establishing accident management plan and quantitative health object.

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

A Method to Calculate Off-site Radionuclide Concentration for Multi-unit Nuclear Power Plant Accident (다수기 원자력발전소 사고 시 소외 방사성물질 농도 계산 방법)

  • Lee, Hye Rin;Lee, Gee Man;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.144-156
    • /
    • 2018
  • Level 3 Probabilistic Safety Assessment (PSA) is performed for the risk assessment that calculates radioactive material dispersion to the environment. This risk assessment is performed with a tool of MELCOR Accident Consequence Code System (MACCS2 or WinMACCS). For the off-site consequence analysis of multi-unit nuclear power plant (NPP) accident, the single location (Center Of Mass, COM) method has been usually adopted with the assumption that all the NPPs in the nuclear site are located at the same COM point. It was well known that this COM calculation can lead to underestimated or overestimated radionuclide concentration. In order to overcome this underestimation or overestimation of radionuclide concentrations in the COM method, Multiple Location (ML) method was developed in this study. The radionuclide concentrations for the individual NPPs are separately calculated, and they are summed at every location in the nuclear site by the post-processing of radionuclide concentrations that is based on two-dimensional Gaussian Plume equations. In order to demonstrate the efficiency of the ML method, radionuclide concentrations were calculated for the six-unit NPP site, radionuclide concentrations of the ML method were compared with those by COM method. This comparison was performed for conditions of constant weather, yearly weather in Korea, and four seasons, and the results were discussed. This new ML method (1) improves accuracy of radionuclide concentrations when multi-unit NPP accident occurs, (2) calculates realistic atmospheric dispersion of radionuclides under various weather conditions, and finally (3) supports off-site emergency plan optimization. It is recommended that this new method be applied to the risk assessment of multi-unit NPP accident. This new method drastically improves the accuracy of radionuclide concentrations at the locations adjacent to or very close to NPPs. This ML method has a great strength over the COM method when people live near nuclear site, since it provides accurate radionuclide concentrations or radiation doses.

UNCERTAINTY AND SENSITIVITY STUDIES WITH THE PROBABILISTIC ACCIDENT CONSEQUENCE ASSESSMENT CODE OSCAAR

  • HOMMA TOSHIMITSU;TOMITA KENICHI;HATO SHINJI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-258
    • /
    • 2005
  • This paper addresses two types of uncertainty: stochastic uncertainty and subjective uncertainty in probabilistic accident consequence assessments. The off-site consequence assessment code OSCAAR has been applied to uncertainty and sensitivity analyses on the individual risks of early fatality and latent cancer fatality in the population outside the plant boundary due to a severe accident. A new stratified meteorological sampling scheme was successfully implemented into the trajectory model for atmospheric dispersion and the statistical variability of the probability distributions of the consequence was examined. A total of 65 uncertain input parameters was considered and 128 runs of OSCAAR with 144 meteorological sequences were performed in the parameter uncertainty analysis. The study provided the range of uncertainty for the expected values of individual risks of early and latent cancer fatality close to the site. In the sensitivity analyses, the correlation/regression measures were useful for identifying those input parameters whose uncertainty makes an important contribution to the overall uncertainty for the consequence. This could provide valuable insights into areas for further research aiming at reducing the uncertainties.

Multi-unit Level 3 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Sung-yeop;Jung, Yong Hun;Han, Sang Hoon;Han, Seok-Jung;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1246-1254
    • /
    • 2018
  • The importance of performing Level 3 probabilistic safety assessments (PSA) along with a general interest in assessing multi-unit risk has been sharply increasing after the Fukushima Daiichi nuclear power plant (NPP) accident. However, relatively few studies on multi-unit Level 3 PSA have been performed to date, reflecting limited scenarios of multi-unit accidents with higher priority. The major difficulty to carry out a multi-unit Level 3 PSA lies in the exponentially increasing number of multi-unit accident combinations, as different source terms can be released from each NPP unit; indeed, building consequence models for the astronomical number of accident scenarios is simply impractical. In this study, a new approach has been developed that employs the look-up table method to cover every multi-unit accident scenario. Consequence results for each scenario can be found on the table, established with a practical amount of effort, and can be matched to the frequency of the scenario. Preliminary application to a six-unit NPP site was carried out, where it was found that the difference between full-coverage and cut-off cases could be considerably high and therefore influence the total risk. Additional studies should be performed to fine tune the details and overcome the limitations of the approach.

A Study on the Simplified Estimating Method of Off-site Consequence Analysis by Concentration of Hydrochloric Acid (염산수용액의 농도별 간이 영향 평가 방법 연구)

  • Jung, Y.k.;Kim, B.;Heo, H.;Yoo, B.;Sin, C.;Yoon, Y.;Yoon, J.;Ma, B.
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • One of the most important elements of the management of chemical accident is threat zone estimation of fires, explosions and toxic gas dispersion based on chemical releases. The threat zone estimation is going to be standard of emergency response for the first defender and base line data of off-site risk assesment (hereinafter referred to as "ORA") and risk management plan (hereinafter referred to as "RMP"). Generally, ALOHA form EPA(U.S.) and Kora(from KOREA MINISTRY OF ENVIRONMENT) has been used for the off-site consequence analysis in Korea. However it is hard to predict accurate consequences rapidly in case of emergency. Hydrochloric acid is a multipurpose raw material used in many industrial applications such as chemical, metal and food industries. It is usually treated in concentrations from 10 ~ 35 %, and release accident have occurred frequently. In this study, we have developed a simplified estimating method and equation to calculate threat zone easily in case of emergency due to release accident of hydrochloric acid.

A Study on application of F-N curve to OCA (장외영향평가 F-N curve 적용에 관한 연구)

  • Lee, Dong Hyeok;Yoo, Byung Tae
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.31-37
    • /
    • 2018
  • The distrust about chemical plant safety have been increased by occurring the major industrial accidents. Chemical plants have become more and more enlarged and sophisticated to increase production amount and decrease cost. So hazard of industrial accidents also have been increased. In this situation, quantitative risk assessment is activated by introducing OCA(Off-site Consequence Analysis). So it is possible to analyze the objective hazard of chemical plant. Currently OCA focus on the end point of hazardous area by fire/explosion/dispersion. But in this case, it is possible to analyze the industrial accident effect to near the chemical plant but hard to consider the actual hazard by frequency and population density. This study analyzes the validity about application of F-N curve to OCA by compare end point with F-N curve about accident.

A Study on the Simplified Estimating Method of Off-site Consequence Analysis for Aqueous Ammonia (암모니아수의 농도별 간이 영향평가 방법 연구)

  • Jung, Yu-kyung;Heo, Hwajin;Yoo, Byungtae;Yoon, Yi;Yoon, Junheon;Ma, Byungchol
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Aqueous ammonia is widely used in household cleaners, fertilizers and denitrification process. It is usually treated in concentrations from 10 % to 30 %, and release accidents have occurred frequently. In this study, we developed a simplified estimating method and equation to calculate threat zone easily in case of emergency due to release accident of aqueous ammonia. We calculated the consequence distance for toxic endpoints of aqueous ammonia(concentration 10 % ~ 30 %) at different puddle areas($1m^2{\sim}500m^2$) using the ALOHA program. Based on the result, we analyzed the relationship between concentration and puddle area with the threat zone and created the equation.