• 제목/요약/키워드: Off-gas

검색결과 900건 처리시간 0.028초

시동/정지 반복에 의한 데드엔드형 고분자전해질 연료전지의 성능 감소 (Performance Degradation of Dead-end Type PEMFC by Startup and Shutdown Cycles)

  • 정재현;정재진;송명현;정회범;나일채;이호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.540-544
    • /
    • 2013
  • 고분자전해질연료전지(PEMFC)는 시동/정지과정에서 성능과 수명이 감소한다. 본 연구에서는 캐소드가스로 산소를 사용하는 데드엔드 형 PEMFC의 시동/정지 과정의 영향을 분극곡선, 임피던스(EIS), SEM과 TEM을 사용해 연구하였다. 시동/정지 과정에서 PEMFC 성능감소를 막기 위해서는 더미 로드를 사용해야 함을 보였다. 시동/정지 반복과정 중 50% 상대습도(RH)에서 캐소드 카본지지체의 부식에 의한 열화가 100% RH보다 심했다. 데드엔드 형 PEMFC의 정지과정에서 PEMFC에 물을 공급해줌으로써 50% RH에서 열화속도를 감소시켰다.

남면지역(南面地域) 농어촌(農魚村) 현대화(現代化) 시범학교(始範學校) 종합시설(宗合施設) 기본계획(基本計劃) 연구(硏究) (A Study on the Architectural Design for Nammyun Rural Pilot School Project)

  • 임창복;최병관;박영숙
    • 교육시설
    • /
    • 제6권2호
    • /
    • pp.24-40
    • /
    • 1999
  • The purpose of this study is planning a representative model of a modernized school with rearrangement of existing two primary schools(Nammyun and Namjin) and a middle school(Seonam) in Nammyun distric. Nammyun district, which is adjacent to Tae-an national ocean park, is the Place where gas a natural advantage. However, in the result of the rural exodus follwed by industrialization, the population in this province are decreased rapidly and it still be on the process of the rural exodus. Hence, the total number of students, each school is under 100 at the moment and the number will be less in the future. Under this consequences, the rearrangement of these school is inevitable. For the new modernized school plan Narnmyun district, estimate the scale of school on the basis of decreased number of students, the analysis the 7th education plan and the questionnaire and face-to-face interview investigation, which is a resident-orented investigation, were carried out preferentially. The major research contents are as follows; o Expansion of schools facility and space for operating the 7th education plan(classified level schools level and subject-based class school plan) o Over-all improvement of educational environment to take all-out advantages of school, social and home education. o The school which can take a part of an educational center of a rural community in schools off-time-after school and summer and winter vocation. o The school which is related to the local cultural, sports and entertainment utility, On the basis of this research, the basic concept and purpose of a new school model model plan in Nammyun will be established and the new school plan represented for the result of this research.

  • PDF

사물 인터넷 기반의 1인 가구를 위한 스마트 콘센트 시스템 (Smart Outlet System for Single-person Household based on IoT (Internet of Things))

  • 김희숙;박병주;조영주
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.895-904
    • /
    • 2017
  • 본 논문에서는 1인 가구를 대상으로 전기 안전, 전기 에너지 소비 관리 그리고 비상시 네트워크를 연결하여 예약된 연락처에 메시지를 전송하는 사물인터넷 기반의 스마트 콘센트 시스템 구축 방식을 제안한다. 제안된 스마트 콘센트 시스템은 서버와 모듈, 어플리케이션, WiFi AP 수신기 사이에 패킷 데이터와 프로토콜을 파싱하여 구현된다. 통신을 위해 구축된 WiFi AP는 콘센트 뿐 만 아니라 가스 차단, 도어락 등에 연결하여 사용하는 것이 가능하다. 또한 제안된 방식은 AC 전류센서(SCT-013)를 통해 받아온 해당 콘센트의 전력량을 실시간으로 수신하여 원격 모니터링 기능을 제공할 수 있다. 스마트 콘센트 시스템은 대기전력 차단 기능과 더불어 전력 사용 자동 분석을 통해 비상시 전력 자동 차단 기능까지 할 수 있을 것으로 기대한다.

대두유 바이오 디젤연료가 압축 착화 연소에서 배기가스에 미치는 영향 (Effects of Soybean Biodiesel Fuel on Exhaust Emissions in Compression Ignition Combustion)

  • 한만배
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.941-946
    • /
    • 2010
  • 1.7L 커먼레일 직접분사 디젤엔진에 대하여 바이오 디젤 연료가 conventional 연소(PM-NOx 트레이드오프 존재)와 저온 연소(low temperature combustion, LTC)에서 배기가스 배출에 미치는 영향을 분석하였다. LTC 연소는 conventional 연소 대비 다량의 EGR 과 연료분사 조건 최적화를 통하여 이루어졌다. 실험에 사용한 두 가지 연료는 초저유황 디젤연료(ultra low sulfur diesel fuel, ULSD), ULSD 에 대두유를 20%(vol. base)혼합한 바이오 디젤 연료(B20)이다. 사용된 연료에 관계없이 LTC 연소를 통하여 conventional 연소 대비 PM 및 NOx 의 동시 저감이 가능하였다. 동일한 엔진작동 조건에 대하여 conventional 연소의 경우 B20 는 ULSD 보다 PM은 적게 배출되나, NOx 는 많이 배출되었다. LTC 연소의 경우 B20 는 ULSD 보다 PM 및 NOx 생성이 많았다.

5kW 급 MCFC 발전시스템 촉매연소기의 유동 및 연소 특성에 대한 수치적 연구 (A Numerical Study on the Internal Flow and Combustion Characteristics of the Catalytic Combustor for the 5kW MCFC Power system)

  • 김종민;이연화;김만영;김형곤;홍동진;조주형;김한석;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3049-3052
    • /
    • 2008
  • MCFC(molten carbonate fuel cell) power generation system is prime candidate for the utilization of fossil based fuels to generate ultra clean power with a high efficiency. In the MCFC power plant system, a combustor performs a role to supply high temperature mixture gases for cathode and heat for reformer by using the stack off-gas of the anode which includes a high concentration of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and to avoid excessive local heating, catalytic combustor is usually used. The catalytic combustion is accomplished by the catalytic chemical reaction between fuel and oxidizer at catalyst surface, different from conventional combustion. In this study, a mathematical model for the prediction of internal flow and catalytic combustion characteristics in the catalytic combustor adopted in the MCFC power plant system is suggested by using the numerical methods. The numerical simulation models are then implemented into the commercial CFD code. After verifying result by comparing with the experimental data and calibrated kinetic parameters of catalytic combustion reaction, a numerical simulation is performed to investigate the variation of flow and combustion characteristics by changing such various parameters as inlet configuration and inlet temperature. The result show that the catalytic combustion can be effectively improved for most of the case by using the perforated plate and subsequent stable catalytic combustion is expected.

  • PDF

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

A qualitative evaluation method for engine and its operating-envelope using GSP (Gas turbine Simulation Program)

  • Kyung, Kyu-Hyung;Jun, Yong-Min;Yang, Soo-Seok;Choi, Dong-Whan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.848-853
    • /
    • 2004
  • Regarding to the project SUAV (Smart Unmanned Aerial Vehicle) in KARI (Korea Aerospace Research Institute), several engine configurations has been evaluated. However it's not an easy task to collect all the necessary data of each engine for the analysis. Usually, some kind of modeling technique is required in order to determine the unknown data. In the present paper a qualitative method for reverse engineering is proposed, in order to identify some design patterns and relationships between parameters. The method can be used to estimate several parameters that usually are not provided by the manufacturer. The method consists of modeling an existing engine and through a simulation, compare its transient behavior with its operating envelope. In the simulation several parameters such as thermodynamics, performance, safety and mechanics concerning to the definition of operation-envelope, have been discussed qualitatively. With the model, all engine parameters can be estimated with acceptable accuracy, making possible the study of dependencies among different parameters such as power-turbine total inertia, TIT, take-off time and part load, in order to check if the engine transient performance is within the design criteria. For more realistic approach and more detailed design requirements, it will be necessary to enhance the compressor map first, and more realistic estimated values must be taken into account for intake-loss, bleed-air and auxiliary power extraction. The relative importance of these “unknown” parameters must be evaluated using sensitivity analysis in the future evaluation. Moreover, fluid dynamics, thermal analysis and stress analysis necessary for the resulting life assessment of en engine, will not be addressed here but in a future paper. With the methodology presented in the paper was possible to infer the relationships between operation-envelope and engine parameters.

  • PDF

색분리를 위한 Dichroic미러 및 광대역 고반사 미러의 설계와 제작 (Design and fabrication of dichroic mirror and broadband H/R mirror for color separation)

  • 박영준;박정호;황영모;김용훈;이진호;이상학
    • 한국광학회지
    • /
    • 제8권3호
    • /
    • pp.183-188
    • /
    • 1997
  • 색분리 필터는 하나의 파장영역에서는 고반사, 다른 파장영역에서는 고투과를 제공하는 광학소자이다. 레이저를 이용한 디스플레이장치의 광학계를 구성하기 위해서는 정확한 색상의 분리가 요구되며, 광학계 효율 측면에서 매우 중요하다. 본 연구에서는 Kr-Ar laser(혼합 gas)빔을 R.G.B 삼색으로 분리하여 화상을 구현하기 위한 미러와 필터를 아래와 같은 특성을 만족하도록 설계 및 제작하였고, 그 특성은 45.deg./S-편광된 빔을 입사시켜서 1) R(반사율)>99% 450~493 nm, T(투과율)>90% 509~685 nm 2) R(반사율)>99% 509~685 nm, T(투과율)>90% 450~493 nm 3) R(반사율)>99% 509-585 nm, T(투과율)>90% 600~683 nm를 각각 만족하는 소자로 색분리를 실현하여 레이저 프로젝션 시스템을 구성하는데 사용하였다.

  • PDF

이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향 (Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing)

  • 김진연;김정대;이제명
    • 대한조선학회논문집
    • /
    • 제56권6호
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.