• Title/Summary/Keyword: Off-Design Condition

Search Result 279, Processing Time 0.026 seconds

Study on Installed Performance of Turbo Shaft Engine (PW206C) for the Smart UAV (스마트 무인기용 터보축 엔진(PW206C)의 장착성능에 관한 연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.222-226
    • /
    • 2006
  • The purpose of this study is to analyze both the design and off design performance simulation of the PW206C turbo shaft engine used in the development of the smart UAV (Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). Its mainly aims to investigate performance behavior at the un-installed and installed conditions. The ways employed to be able to analyze the performance extensively were mainly carried out by comparison of performance simulation results from both the commercial program 'GASTURB 9' using compressor maps generated by Genetic algorithms (GAs) or Scaling Method, and the engine manufacturer's program 'EEPP'. Off-design performance analysis was performed through matching of both mass flow and work between engine components. The set of performance simulations of the developed analytical models was performed by a commercial program package (GASTURB 9) that provides great flexibility in the choice of independent variables of the overall system. The results from the simulations are used to compare turbo shaft engine (PW206C) performance data obtained by the EEPP. At un-installed condition, it was found that the results with the compressor map generated by GAs were relatively agreed well than those with the compressor map generated by the Scaling Method. The performance calculation results using the compressor map generated by GAs were compared at un-installed condition and installed conditions with ECS-off and ECS-Max in variation of altitude, gas generator speed and flight speed.

  • PDF

A study on Defect Diagnosis of Gas Turbine Engine Using Hybrid SVM-ANN in Off-Design Region

  • Seo, Dong-Hyuck;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.72-79
    • /
    • 2008
  • The weak point of the artificial neural network(ANN) is that it is easy to fall in local minima when it learns too much nonlinear data. Accordingly, the classification ratio must be low. To overcome this weakness, the hybrid method has been proposed. That is, the ANN learns data selectively after detecting the defect position by the support vector machine(SVM). First, the SVM has been used for determination of the defect position and then the magnitude of the defect has been measured by the ANN. In off-design condition, the operation region of the engine is wide and the nonlinearity of learning data increases. The module system, dividing the whole operating region into reasonably small-size sections, has been suggested to solve this problem. In this study, the proposed algorithm has diagnosed the defects of triple components as well as single and dual components of the gas turbine engine in off-design condition.

  • PDF

Aerodynamic Optimization Design for All Condition of Centrifugal Compressor

  • Lin, Zhirong;Gao, Xue-Lin;Yuan, Xin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.213-217
    • /
    • 2008
  • This paper describes an application of centrifugal compressor optimization system, in which the blade profile of impeller is represented with NURBS(Non-Uniform Rational B-Spline) curve. A commercial CFD(Computational Fluid Dynamics) program named NUMECA fine/turbo was used to evaluate the performance of the whole centrifugal compressor flow passage including impeller and diffuser. The whole optimization design system was integrated based on iSIGHT, a commercial integration and optimization software, which provides a direct application of some optimization algorithms. To insure the practicability of optimization, the performance of centrifugal compressor under all condition was concerned during the optimizing process. That means a compositive object function considering the aerodynamic efficiency, pressure ratio and mass flow rate under different work condition was applied by using different weight number for different conditions. Using the optimization method described in this paper, an optimized design of the impeller blade of centrifugal compressor was obtained. Comparing to the original design, optimized design has a better performance not only under the design work condition, but also the off-design work condition including near stall and near choke condition.

  • PDF

The influence of guide vane opening on the internal flow of a francis turbine

  • Wei, Qingsheng;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-281
    • /
    • 2013
  • The variable demand on the energy market requires a great flexibility in operating hydro turbines. However, Francis turbine operated at off-design conditions poses technical challenges related to large unsteady forces given by residual swirl and angular momentum. In order to improve the performance of a Francis turbine, the paper presents a numerical investigation of the 3D flow in the turbine at off-design conditions and discusses the influence of variable guide vane openings on the internal flow of a Francis turbine with the help of computational fluid dynamics. First, the internal flow characteristics of Francis turbine operated by varied guide vane angle at off design condition are computed and the optimal guide vane angle is obtained. Secondly, the Francis turbine is operated with guide vane number varies at the optimal guide vane angle. Finally, pressure contours and velocity distributions in the distributor are discussed and compared.

Endwall Heat (Mass) Transfer Characteristics of a Linear Turbine Cascade at Off-Design Conditions (탈설계점에서의 선형 터빈 익열 끝벽 열(물질)전달 특성)

  • Lee, Sang-Woo;Park, Jin-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1092-1097
    • /
    • 2004
  • The heat (mass) transfer characteristics on the endwall surface of a first-stage linear turbine rotor cascade at off-design conditions has been investigated by employing the naphthalene sublimation technique. The experiments are carried out at the Reynolds number of $2.78{\times}10^{5}$ for two incidence angles of -5% and +5%. The positive incidence angle results in intensification of the pressure-side leg of a leading-edge horseshoe vortex, which delivers higher heat transfer along its trace. On the other hand, the negative incidence angle show an opposite tendency.

  • PDF

Design of a Plasmonic Switch Using Ultrathin Chalcogenide Phase-change Material

  • Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.239-246
    • /
    • 2017
  • A compact plasmonic switching scheme, based on the phase change of a thin-film chalcogenide material ($Ge_2Sb_2Te_5$), is proposed and numerically investigated at optical-communication wavelengths. Surface plasmon polariton modal analysis is conducted for various thicknesses of dielectric and phase-change material layers, and the optimized condition is induced by finding the region of interest that shows a high extinction ratio of surface plasmon polariton modes before and after the phase transition. Full electromagnetic simulations show that multiple reflections inside the active region may conditionally increase the overall efficiency of the on/off ratio at a specific length of the active region. However, it is shown that the optimized geometrical condition, which shows generally large on/off ratio for any length of active region, can be distinguished by observing the multiple-reflection characteristic inside the active region. The proposed scheme shows an on/off switching ratio greater than 30 dB for a length of a few micrometers, which can be potentially applied to integrated active plasmonic systems.

Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect (탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가)

  • Lee, Chan;Kim, Yong Chul;Lee, Jin Wook;Kim, Hyung Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

Study on performance prediction of centrifugal compressor with diffuser angle and rotational speed change (원심압축기의 디퓨져 각도조절과 회전수변경에 따른 성능예측에 관한 연구)

  • Park, Y.H.;Shim, Y.H.;Kim, C.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • Centrifugal compressors are widely used and each operating condition is different. However, it cannot be manufactured according to the every operating condition. In the this study, performance of compressor was evaluated with various rotational speeds of impeller and various stagger angles of diffuser in order to apply a typical model widely. A centrifugal compressor was designed and manufactured based on the design point. On this machines, an experiment was conducted and the performance was predicted at off-design point. The performance prediction was validated with the experimental result and the numerical result. Although the isentropic efficiency on the prediction was slightly lower than that on the experimental result due to the heat loss in the experiment, the pressure ratio was predicted well and also the predicted results were matched well with the numerical results. When the rotational speed of the impeller and the stagger angle of the diffuser were changed together, the compressor can be worked in the high efficiency region and avoided operating in the stall region.

On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine (50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석)

  • Kim, Su-Yong;Park, Mu-Ryong;Jo, Su-Yong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF

Performance Modeling and Off-design Performance Analysis of A Separative Jet Turbofan Engine Using SIMULINK (SIMULINK를 이용한 분리형 노즐을 갖는 터보팬엔진 성능모델 구성 및 탈설계점 성능 해석)

  • Kong, Chang-Duk;Park, Gil-Su;Lee, Kyung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.219-224
    • /
    • 2012
  • In this work, a steady-state performance modeling and off-design performance analysis of the 2-spool separate jet turbofan engine named BR715-56 which is a power plant for the narrow body commercial aircraft is carried out for engine performance behaviors investigation and condition monitoring using a commercial code MATLAB/SIMULINK. Firstly, the engine component maps of fan, high pressure compressor, high pressure turbine and low pressure turbine are generated from similar component maps using the scaling method, and then the off-design performance simulation model is constructed by the mass flow matching and the work matching between components. The model is developed using SIMULINK, which has advantages of easy steady-stare and dynamic modelling and user friendly interface function. It is found that the off-design performance analysis results using the proposed model are well agreed with the performance analysis results by GASTURB at various operating conditions.

  • PDF