• Title/Summary/Keyword: Off-Axis Mirror

Search Result 64, Processing Time 0.016 seconds

Optical Design and Tolerance Analysis for UVO-Multiband Polarizing Imager System

  • Han, Jimin;Chang, Seunghyuk;Park, Woojin;Lee, Sunwoo;Ahn, Hojae;Kim, Geon Hee;Lee, Dae-Hee;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2020
  • UVO-Multiband Polarizing Imager System (UVOMPIS) is an ultraviolet to visible light multi-wavelength polarization/imaging system for Compact Advanced Satellite. We developed Linear Astigmatism Free-Three Mirror System (LAF-TMS) D200F2 as an optical system of UVOMPIS which has an entrance pupil diameter of 200 mm, a focal ratio of 2, a field of view of 2° × 4°. LAF-TMS is a confocal off-axis reflecting telescope system that removes linear astigmatism, and its all mirrors (M1, M2, M3) are optimized with the freeform surface to reduce high-order aberrations. Through the sensitivity analysis and Monte-Carlo simulation as the tolerance analysis, we can confirm the feasibility of the system, relatively sensitive parameters (tilt, decenter, despace, surface RMS error), and considerations for optomechanical design. From the sensitivity analysis, we can discover the relatively sensitive optical alignment parameters to a single perturbation. Further more, in the monte-carlo simulation, we investigate the minimum tolerance budget satisfying the required optical performance and whether the tolerance range is satisfied within manufacturing error.

  • PDF

Studies on Curved Diffractive Optical Elements in EUV (극자외선 영역에서 곡면 DOEs에 관한 연구)

  • Choi, Sung-Eul;Lee, Yong-Woo;Kwon, Myung-Hoi;Kim, Yong-Hoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.304-312
    • /
    • 2005
  • Field performance of several different types of diffractive optical elements(DOEs) has been carried out. Using Zemax model, we have designed five different types of DOEs, such as transmissive flat-DOE, transmissive curved-DOE, reflective flat-DOE, reflective curved-DOE and parabolic mirror, We have applied two different wavelengths, i.e., 13 m(EUV) and 632.8 nm(visible) to above DOEs. Off_axis dominate aberrations and the diffraction limiting (Rayleigh limit) field angles have been investigated and compared at both wavelengths for each DOE. At diffraction limit, field angle of curved-DOEs was much greater than that of flat-DOEs for both transmission and reflective types. We also showed that dominated off_axis aberration of flat-DOEs was coma, but that of curved-DOEs was mixture of astigmatism and curvature of field. The measured field angle and expected OPD aberrations were well coincided with theoretical ones. Increasing the ratio of field angle with wavelength was more effective in curved-DOEs than flat-DOEs.

Feasibility Study of a Future Korean Space Telescope

  • Lee, Dae-Hee;Ree, Chang Hee;Song, Yong-Seon;Jeong, Woong-Seob;Moon, Hong-Kyu;Kim, Min Gyu;Pyo, Jeonghyun;Moon, Bongkon;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.4-40
    • /
    • 2017
  • According to the Korean government's Long-term Space Development Plan 2040, "Creative space science research" is included in a statement to investigate the origin and evolution of the universe by conducting a series of Korean space telescope missions: launch of space telescopes on a small satellite and an international collaboration explorer by 2020, a mid-size domestic space telescope by 2030, and a large size Korea leading international space telescope by 2040. We studied the feasibility of the future Korean Space Telescope (KST) for a mid-size domestic satellite platform. In order to pursue the uniqueness of the science program, we consider a wide range of observing wavelength (0.2um ~ 2.0um) with a spectral resolution of R~6 in the NUV and optical bands, and R~30 for NIR, utilizing an off-axis TMS(Three Mirror System) optics with a wide field of view ($2{\times}4$ degrees) which is optimized for ultra-low surface brightness sources. The main science goals of the mission include investigations of the galaxy formation, cosmic web, and the cosmic background radiation in the NUV-NIR regions. In this paper, we present the science cases and several technical challenges to be resolved along with the future milestones for the success of the KST mission.

  • PDF

MTF and wavefront error testing of large aperture optical system using unequal path interferometer (경로길이 불일치 간섭계를 이용한 대구경 광학계의 MTF 측정과 파면오차 검사)

  • Song, Jong-Sup;Jo, Jae-Heung;Lee, Yun-Woo;Song, Jae-Bong;Yang, Ho-Soon;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • A method for measuring the wavefront error and the modulation transfer function(MTF) of large aperture optics using an unequal path interferometer is presented. A bidirectional shearing interferometer is used for collimation testing of the measurement system. A large aperture Fizeau interferometer with long optical path difference measures the wavefront error of the optics under test by using a $\Phi$ 400 mm off-axis parabolic mirror. The MTF is also measured at the wavelength of the interferometer by changing the laser light into partially incoherent light. Test results of a $\Phi$ 300 mm Cassegrain type satellite telescope made in Korea are presented.