• Title/Summary/Keyword: Off-Axis

Search Result 500, Processing Time 0.028 seconds

Prototype Development for the GMT FSM Secondary - Off-axis Aspheric Mirror Fabrication -

  • Kim, Young-Soo;Kim, Jihun;Song, Je Heon;Cho, Myung;Yang, Ho-Soon;Lee, Joohyung;Kim, Ho-Sang;Lee, Kyoung-Don;Ahn, Hyo-Sung;Park, Won Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • A prototype of the GMT FSM has been developed to acquire and to enhance the key technology - mirror fabrication and tip-tilt actuation. The ellipsoidal off-axis mirror has been designed, analyzed, and fabricated from light-weighting to grinding, polishing, and figuring of the mirror surface. The mirror was tested by using an interferometer together with CGHs, which revealed the surface error of 13.7 nm rms in the diameter of 1030 mm. The SCOTS test was employed to independently validate the test results. It measured the surface error to be 17.4 nm rms in the diameter of 1010 mm. Both tests show the optical surface of the FSMP mirror within the required value of 20 nm rms surface error.

Optical Design of a Wide-field Off-axis Two-mirror System without Ray Obstruction (광선의 차폐가 없는 광시야 비축 2반사광학계 설계)

  • Oh, Hye-Jin;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.263-272
    • /
    • 2017
  • To design a wide-field optical system, the inverted telephoto configuration, which has a negative front group and a positive rear group, is popular. For a two-mirror system, the inverse Cassegrain system has the inverted telephoto configuration, but the inverse Cassegrain system with the conventional, axially symmetric configuration shows severe field screening and ray obstruction. To avoid these problems, we put the aperture stop on the secondary mirror of an inverse Cassegrain system to increase field of view, and designed a wide-field off-axis two-mirror system which only uses the off-axis field, without ray obstruction.

Statistical Analysis of 3D Volume of Red Blood Cells with Different Shapes via Digital Holographic Microscopy

  • Yi, Faliu;Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.115-120
    • /
    • 2012
  • In this paper, we present a method to automatically quantify the three-dimensional (3D) volume of red blood cells (RBCs) using off-axis digital holographic microscopy. The RBCs digital holograms are recorded via a CCD camera using an off-axis interferometry setup. The RBCs' phase image is reconstructed from the recorded off-axis digital hologram by a computational reconstruction algorithm. The watershed segmentation algorithm is applied to the reconstructed phase image to remove background parts and obtain clear targets in the phase image with many single RBCs. After segmenting the reconstructed RBCs' phase image, all single RBCs are extracted, and the 3D volume of each single RBC is then measured with the surface area and the phase values of the corresponding RBC. In order to demonstrate the feasibility of the proposed method to automatically calculate the 3D volume of RBC, two typical shapes of RBCs, i.e., stomatocyte/discocyte, are tested via experiments. Statistical distributions of 3D volume for each class of RBC are generated by using our algorithm. Statistical hypothesis testing is conducted to investigate the difference between the statistical distributions for the two typical shapes of RBCs. Our experimental results illustrate that our study opens the possibility of automated quantitative analysis of 3D volume in various types of RBCs.

An Optical Design of Off-axis Four-mirror-anastigmatic Telescope for Remote Sensing

  • Li, Xing Long;Xu, Min;Ren, Xian Dong;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • An off-axis four-mirror-anastigmatic telescope is presented here which is composed of two aspheric surfaces and two spherical surfaces. The entrance pupil diameter is 290 mm and the stop is located at the primary mirror. The effective focal length is 900 mm. The strip field of view for the telescope is $15^{\circ}{\times}0.2^{\circ}$ and if the telescope is launched into an orbit about 400 km altitude, the observed range width will be more than 105 km within a scene without any other auxiliary scanning instrument. The spectral range can be as wide as from visual wave band to infrared wave band in the mirror system. This telescope can be used for environmental monitoring with different detectors whose pixel is adapted to the optical resolution. In this paper, the spectral range is chosen as 3.0 -5.0 ${\mu}m$, and center distance of the pixel is 30 ${\mu}m$. And the image quality is near the diffraction limit.

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing

  • Li, Xing Long;Xu, Min;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.343-348
    • /
    • 2012
  • This paper described an off-axis five-mirror-anastigmatic telescope. It is composed of three aspheric surfaces and one spherical surface while the third mirror and fifth mirror have the same parameters at the same place. This configuration is useful for having wide field of view. The strip full field of view for the near infrared telescope is $20^{\circ}{\times}0.2^{\circ}$. The entrance pupil is located in front of the first mirror. There is an intermediate image between the second mirror and the third mirror. The entrance pupil diameter is 100 mm and the effective focal length is 250 mm. The spectral range is $0.85-1.75{\mu}m$. The pixel pitch is $15{\mu}m$. The image quality is near the diffraction limit. Some methods were used to restrain the stray light such as a field stop near the intermediate image, the baffle, the narrow-band pass filter and a stop in front of the focal plane.

300-W-class Side-pumped Solar Laser

  • Qi, Hongfei;Lan, Lanling;Liu, Yan;Xiang, Pengfei;Tang, Yulong
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.627-633
    • /
    • 2022
  • To realize uniform side pumping of solar lasers and improve their output power, a solar concentrating system based on off-axis parabolic mirrors is proposed. Four identical off-axis parabolic mirrors with focal length of 1,000 mm are toroidally arranged as the primary concentrator. Four two-dimensional compound parabolic concentrators (2D-CPCs) are designed as a secondary concentrator to further compress the focused spot induced by the parabolic mirrors, and the focused light is then homogenized by four rectangular diffusers and provides uniform pumping for a laser-crystal rod to achieve solar laser emission. Simulation results show that the solar power received by the laser rod, uniformity of the light spot, and output power of the solar laser are 7,872.7 W, 98%, and 351.8 W respectively. This uniform pumping configuration and concentrator design thus provide a new means for developing high-power side-pumped solid-state solar lasers.

A study on Development of Footwear Shape Scanner for Off-Line Robot Path Programming

  • Lho, Tae-Jung;Song, Se-Hoon;Ju, Hyun-Woo;Lee, Jung-Wook;Cho, Jae-Kung;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.808-812
    • /
    • 2003
  • We need a lot of manpower and we can cut down a labor cost by applying industrial robots the footwear bonding automation process. In this study, we suggest how to program off-line robot path along a shoe's outsole shape in the footwear bonding process by 5-axis microscribe system like robot arms. This microscribe system development consists 5-axis microscribe mechanics, signal processing circuit, and PC with software. It is the system for making database of a shoe's outsole through the movement of a microscribe with many joints. To do this, first read 5-encoders' pulse values while a robot arm points a shoe's outsole shape from the initial status. Then, calculate a relative shoe's outsole by Denavit-Hatenberg's (D-H) direct Kinematics of known length of links and coordinate values. Next, calculate the encoders' pulse values of the robot arm's rotation and transmitting the angle pulse values to the PC through a circuit. Finally, it is able to display a shoe's outsole at real-time by computing the Denvavit-Hantenberg's (D-H) direct kinematics in the PC. With the coordinate values calculated above, we can draw a bonding gauge-line on the upper. Also, we can make off-line robot path programming compute a shoe's bonding area on the upper. These results will be effectively applied for programming a robot path on off-line and automatically.

  • PDF

POINT SPREAD FUNCTION OF THE SOFT X-RAY TELESCOPE ABOARD YOHKOH

  • SHIN JUNHO;SAKURAI TAKASHI
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.117-124
    • /
    • 2003
  • Pre-launch calibration data have been analyzed for evaluating the point spread function (PSF) of Yohkoh Soft X-ray Telescope (SXT). Especially, it is found crucial that the effect of undersampling should be treated properly. The best fit solution of the SXT PSF, which is modeled by an elliptical Moffat function, has been derived by the comparison with the ground experiment data. In order to examine the off-axis variation of the SXT PSF, we need to define in advance the location of the optical axis on the CCD. According to the previous studies, the off-axis variation of effective area (the vignetting function) may be approximated either by two non-concentric cones or by a cone with some flat distortions. There have been, however, no fully approved representations for the SXT vignetting effect. The effect of the shift of the optical axis from the geometrical center of the telescope is investigated by numerical simulation. It is revealed from our study that the full width at half maximum (FWHM) of the SXT PSF stays nearly constant within an error bound over the central area of the CCD where the solar disk is located.

Planar Array of a Probe Excited Circular Ring Radiating Bidirectional Pattern

  • Phongcharoenpanich, Chuwong;Sroysuwan, Thanarart;Wounchoum, Phairote;Kosulvit, Sompol;Krairiksh, Monai
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.719-722
    • /
    • 2002
  • This paper reports the characteristics of a bidirectional antenna by using a planar array of a probe excited circular ring. The element of a bidirectional antenna is first designed to achieve the maximum directivity. The directivity can be further increased by arranging these elements to form the linear array. There are two types of linear array to be investigated i.e., on axis and off axis arrangement. On-axis linear array yields better directivity than off-axis linear array. Therefore, this orientation is further used to form the planar array. The radiation characteristics of this optimum planar array are rigorously reported. The proposed structure is very useful to extend the distance between the base station in PCT system.

  • PDF

Optic-axis Alignment and Performance Test of the Schwarzschild-Chang Off-axis Telescope

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Jeong, Byeongjoon;Lee, Kwang Jo;Kim, Yonghwan;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.4-57
    • /
    • 2017
  • The Schwarzschild-Chang off-axis telescope is a "linear astigmatism-free" confocal system. The telescope comprises two pieces of aluminum-alloy freeform mirrors that are fabricated with diamond turning machine (DTM) process. We designed optomechanical structures where optical components in the telescope system can be adjustable on a linear stage. Optomechanical deformation caused by the weight of system itself and its temperature variation is analyzed by the finite element analysis (FEA). The results show that the deformation is estimated in the tolerance range. For the optic-axis alignment of telescope system, three-point alignment (TPA) method is chosen. The TPA method uses three parallel lasers and a plane mirror. Point source images were taken from collimated light and field observation. The performance of optical system was tested by point spread function and aberration measurement of the point sources.

  • PDF