• Title/Summary/Keyword: Odor compounds

Search Result 382, Processing Time 0.031 seconds

Evaluation of Malodor Release and Control Devices in Charcoal Manufacturing Facility (숯 제조시설의 악취물질 배출특성과 관리실태 조사 연구)

  • Jeong, Ju-Young;Seo, Byeong-Ryang;Kim, Jae-Hyuck;Chin, Sung-Min;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.883-890
    • /
    • 2012
  • Emission characteristics of gaseous odor compounds emitted from the charcoal manufacturing process were investigated, and evaluated the odor removal efficiency of odor control devices. It was found that the measured odor dilution ratio of emission gases ranged from 10,000 to 44,814, which exceed largely the emission standard in the stack. Methylmercaptan, trimethylamine, hydrogen sulfide, acetaldehyde were turned out as major odor compounds of the charcoal manufacturing process. It was revealed that the odor removal ratio of odor control devices were very low due to the its improper maintenance and wrong design.

Study on Odor Formation Control during Kraft Pulping

  • Song, HaiNong;Chai, XinSheng;Zhu, HongXiang;Yoon, Sung-Hoon;Zhang, Dongcheng;Wang, Shuang-Fei
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.317-321
    • /
    • 2006
  • The investigation of the formation of organic sulfur compounds (i.e., odor species), mainly methyl mercaptan and demethyl suifide, during kraft pulping has been conducted, in which both hardwood and softwood species were used. It was discovered that there is an organic sulfur compounds formation phase transition point with respect to delignification extent. The transition point occurs at a kappa number of approximately 35 and 20 for softwoods and hardwoods, respectively. The results also showed that both low sulfidity and anthraquinone (AQ) addition are helpful to control the formation of theses organic sulfur compounds during kraft pulping. Whereas Hexenuronic acid (HexA) has contribution to Kappa number, the extended delignification not only lead to low pulp yield, but also be adverse to odor control. A significant in-digester odor reduction can be achieved if the pulping is to be terminated before phase transition point and combined with AQ addition.

  • PDF

Volatile Compounds and Sensory Odor Properties of Commercial Vinegars (식초의 휘발성 성분 및 관능적 특성)

  • Yoon, Hee-Nam;Moon, Soo-Yeun;Song, Sang-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.299-305
    • /
    • 1998
  • It was investigated to identify the volatile compounds of commercial vinegars by dynamic headspace sampling GLC-mass spectrometry, and additionally to evaluate the difference of sensory odor properties among vinegars such as brewed, cider, brown rice and persimmon vinegars. Thirty compounds were identified in four kinds of vinegar, which were composed of 9 carbonyl compounds, 12 esters, 6 alcohols and 3 acids. 3-Hydroxy-2-butanone could be merely detected in some of vinegar samples, and persimmon vinegar was characterized to include more various alcoholic compounds compared to the other kinds of vinegar. 3-Methyl-1-butanol was not detected from any samples of brewed vinegar, but from the most of cider, brown rice and persimmon vinegars. Persimmon vinegar has shown high strength of background odor intensity, and consequently was appeared to be inferior in background (p<0.05) and overall(p<0.01) odor preference scores to cider, brewed and brown rice vinegars.

  • PDF

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Evaluation of Complex Odor and Odorous Compounds in a Pilot-Scale Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화 공정의 복합 악취 및 악취 물질 평가)

  • Park, Seyong;Jung, Dai-Hyuck;Yoo, Eui-Sang;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.33-39
    • /
    • 2009
  • This study was conducted to evaluate production of complex odor and 12 specific odorous compounds in a pilot-scale (capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each raw material was mixed with seed material and operated for two periods (1st : 50 days, 2nd : 60days). During composting, the temperature hit $90{\sim}95^{\circ}C$ after every mixing in both periods. Therefore, it was concluded that increasing temperature also saves the time which required for composting and high reduction of organics and water contents. The primary odorous compounds were ammonia, methyl mercaltan, dimethyl disulfide and trimethylamine. The concentration of the primary compounds and complex odor during the operation were higher than those on final day and most compounds did not exceed the allowable exhaust standard for odor. Also, it was found that optimal mixing time and control of high temperature are the most important parameters for odor control in ultra thermophilic aerobic composting.

  • PDF

Emission Characteristics of Odors and Odorants Released from Grilling Mackerel and Pork Belly by Different Cooking Tools

  • Kim, Hyun-Jeong;Yu, Mee-Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1763-1773
    • /
    • 2014
  • It is known that mackerel and pork belly release a strong odor in the process of roasting. We evaluated a dilution factor of odor arising during roasting mackerel or pork belly and the relative odor strength using several cooking tools and analyzed compounds causing odors with gas chromatograph/mass detector. Roasting pans used were grill with lid, electric grill without lid and general roasting pan, and a grill with lid can attach the activated carbon charcoal deodorant at the inside of lid. And all electric grills have a drip tray under the heater. We investigated characteristics of odor emission depending on the presence of water and deodorants in these cooking tools. Study has shown that roasting mackerel produces approximately 36 time more odors than roasting pork belly, and the reduced odor emission when roast with water. And it shows the reduced deodorant effect when cooked with water after attaching activated carbon charcoal in the cooking pan. Major odor causing compounds arising when cooking mackerel and pork belly were aldehydes with high boiling point such as octyl aldehyde with a low odor threshold value.

A Study on the Distribution of Atmospheric Concentrations of Sulfur Compounds by GC/FPD (GC/FPD에 의한 대기 중 황화합물 농도분포에 관한 연구)

  • Yang, Sung Bong;Yu, Mee Seon;Hwang, Hee Chan
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.240-248
    • /
    • 2003
  • Sulfur compounds which are well-known odor-active compounds in industrial area have very low detection threshold values. Trace amounts of volatile sulfur compounds in enviroment air around several odor sources were concentrated in liquid argon bath and determined by gas chromatograph with flame photometric detector (FPD) which exhibits very good selectivity and sensitivity. 25% ${\beta}$,${\beta}$-Oxydipropionitrile on 60/80 Chromosorb W was used as adsorbent for the preconcentration of sulfur compounds in air sample and also as packing material for a packed glass column. Concentration volume of air sample was different from place to place in the range of 0.1~3.0L. Atmospheric concentrations of sulfur compounds in air of residential districts and boundaries of business establishments, and also those in the exhausted gases of emission points such as a sewage disposal plant in industrial area were measured.

The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

  • Febrisiantosa, Andi;Choi, Hong L.;Renggaman, Anriansyah;Sudiarto, Sartika I.A.;Lee, Joonhee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1209-1216
    • /
    • 2020
  • Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation-horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.

Odor Characteristics and Concentration of Malodorous Volatile Organic Compounds Emitted from a Sewer and Its Outlet (하수관거 및 토구에서 발생하는 휘발성 유기화합물 악취 특성)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.457-466
    • /
    • 2017
  • Objectives: This study was carried out to investigate the characteristics of volatile organic compounds (VOCs) emitted from sewerage facilities such as a sanitary sewers, outlets, and catch basins. In addition, the dominant malodorous VOCs among the compounds in this study were studied. Methods: Waste gas samples were collected at 27 points in a sanitary sewer in commercial and residental areas. The concentrations of seven volatile organic compounds, including benzene and toluene, in the samples were analyzed by gas chromatograph mass spectrophotometer (GC/MS). Odor concentrations were estimated using the concentration data of the VOCs and each compound's threshold limit value. Results: As a result, it appeared that the average concentration of total observed data for acetaldehyde was 15.98 ppb and benzene 1.87 ppb, toluene 82.31 ppb, ethyl benzene 63.12 ppb, m+p-xylene 15.66 ppb, oxylene 18.73 ppb, and styrene 4.39 ppb. VOC concentrations in the commercial area were higher than those in the residential area. VOC concentrations of waste gas emitted from sewer lines was also higher than those at the outlet and in the catch basins. It was estimated that the main malodorous VOC among the seven VOCs was acetaldehyde. Conclusions: As there is little data on VOC concentrations inside sewer facilities in Korea, these data will be helpful for estimating impact assessment of VOCs and establishing a counter-plan for the abatement of VOCs from sewer facilities in the future.

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.