• Title/Summary/Keyword: Odgen Model

Search Result 2, Processing Time 0.015 seconds

On the Contact Behavior Analysis of the O-ring Depending on the Contact Surface Profiles (접촉면 형상에 따른 O-링의 접촉거동해석에 관한 연구)

  • Kim Chung Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, the contact stress and strain distributions in elastomer O-ring seals have been analyzed using a non-linear finite element method. The stress behavior of PTFE materials is assumed as Odgen model because the sealing clearance between the flange and the surface of the O-ring is not small and the sealing pressure of working fluids covers from the atmospheric pressure to high pressure of 15MPa. The contact normal force and stress in wavy O-rings in which is developed for this analysis are uniformly distributed along the flange and the wall of the rectangular groove. And the normal sealing forces are also kept high compared to other contact sealing models such as the conventional O-ring and X-ring, Thus, the FEM computed results indicate that the sealing characteristic of wavy O-rings is food compared with other contact seals.

On the Contact Behavior Analysis and New Design of O-ring Seals

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Kim, Young-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.121-122
    • /
    • 2002
  • This paper presents contact behavior of an Polyperfluoroalkoxyethylene(PTFE) ring seals by a non-linear finite element method using the thermomechanical analysis. PTFE elastomer was assumed as odgen model for numerical analysis in FEM commercial code because elastomer has nonlinear behaviour character. The shape effects are investigated for sealing performance of ring seal in boundary conditions which as gas pressure, groove temperature and various O-ring seal models. Also contact stress and equivalent total strain are investicated. An O-ring seals was modeled four shape which are circle, two sunflower and X. The highest contact stress occurs at sunflower-ring seal with groove deapth of 0.35mm. the equivalent total strain of sunflower-ring seal is lower than that of the others under low gas pressure condition but under gas pressure condition over 4Mpa, that of sunflower-ring seal is higher. The calculated FEM results shows that the Sunflower-ring seal with groove depth of 0.35mm has excellent performance compared with other seal models.

  • PDF