• Title/Summary/Keyword: Octane number improver

Search Result 3, Processing Time 0.016 seconds

A Study on Combustion Characteristics of Methyl/Ethyl Butyrate blend (메틸/에틸 부틸레이트 혼합연료의 연소특성에 관한 연구)

  • Kim, Sungwoo;Lee, Minho;Kim, Jeonghwan;Min, Kyoung-Il;Kim, Kiho;Yim, Eui-Soon;Jung, Choong Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • This study is a part of the project that investigates a possibility of using methyl/ethyl butyrate as an alternative material of MTBE. To investigate characteristics of the two materials, a 2.0L 4-cylinders SI engine that was coupled to an 160kw EC engine dynamometer was used and operated several conditions. Two exhaust gas analyzer was used to measure CO, NOx and THC of after and before of a catalyst. Also, to compare combustion characteristics of the fuels a combustion analyzer was used for measuring pressure of inside of a cylinder. The results show no special difference between MTBE and the two materials from the emission and combustion characteristics aspect.

  • PDF

The Characteristics Study of Vehicle Evaporative Emission and Performance according to the Bio-Fuel Application (바이오 연료 적용에 따른 차량 증발가스 및 성능특성 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Kim, Sin;Park, Cheon-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.874-882
    • /
    • 2017
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotiv e and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward three main issues : evaporative, performance, air pollution. In addition, researcher studied the environment problems of the bio-ethanol, bio-butanol, bio-ETBE (Ethyl Tertiary Butyl Ether), MTBE (Methyl Tert iary Butyl Ether) fuel contained in the fuel as octane number improver. The researchers have many dat a about the health effects of ingestion of octane number improver. However, the data support the con clusion that octane number improver is a potential human carcinogen at high doses. Based on the bio-fuel and octane number improver types (bio-ethanol, bio-butanol, bio-ETBE, MTBE), this paper dis cussed the influence of gasoline fuel properties on the evaporative emission characteristics. Also, this p aper assessed the acceleration and power performance of gasoline vehicle for the bio-fuel property. As a result of the experiment, it was found that all the test fuels meet the domestic exhaust gas standards, and as a result of measurement of the vapor pressure of the test fuels, the bio - ethanol : 15 kPa and the biobutanol : 1.6 kPa. thus when manufacturing E3 fuel, Increasing the biobutanol content reduces evaporation gas and vapor pressure. In addition, Similar accelerating and powering performance was shown for the type of biofuel and when bio-butanol and bio-ethanol were compared accelerated perf ormance was improved by about 3.9% and vehicle power by 0.8%.

Analysis of Components to Determine Illegal Premium Gasoline (가짜 고급휘발유 판정을 위한 성분 분석)

  • Lim, Young-Kwan;Kang, Byung-Seok;Lee, Bo-O-Mi;Park, So-Hwi;Park, Jang-Min;Go, Young-Hoon;Kim, Seung-Tae;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.232-239
    • /
    • 2021
  • Petroleum is the most consumed energy source in Korea with a usage rate of 38.7% among the available primary energy sources. The price of liquid petroleum products in Korea includes taxes such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference from that of the normal product and its tax-free nature. Generally, the illegal petroleum product is produced by mixing liquid petroleum with other similar petroleum alternatives. The two kinds of gasoline, common gasoline and premium gasoline, are being distributed in Korea. The premium gasoline is often adulterated with cheaper common gasoline that lowers the octane number of gasoline. It is possible to distinguish them with their color difference, green and yellow for different grade gasoline. However, when small volume of common gasoline is added to premium gasoline, it is difficult to determine whether premium gasoline contained common grade or not. In this study, we inspect gasoline, which is illegally produced by mixing common gasoline to premium gasoline. When the ratio of mixing common gasoline is increased, premium gasoline shows decreasing absorbance at 600 nm and 650 nm under UV-Vis spectrometer. Moreover, the detected intensity (mV·s) of green dye in high performance liquid chromatography (HPLC) was decreased by common gasoline under 0.99 correlation value. The more the common gasoline is mixed, the more olefin and naphthene are detected by gas chromatography. In addition, trimethyl pentane as octane improver, paraffin and toluene are decreased by common gasoline mixing. The findings of this study suggests that illegal petroleum can be identified by analysis of components and simulated samples.