• Title/Summary/Keyword: Octane

Search Result 246, Processing Time 0.026 seconds

Investigations of Reactive Intermediate formed in the oxidation of 4-Methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2] octane 1-sulfide (4Methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octanel-sulfide의 산화반응 중 생성되는 반응성 중간체에 대한 연구)

  • Kim, Jeong-Han
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 1996
  • 4-Methyl-2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane 1-sulfide (BPS), 4-Methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2] octane 1-oxide (BPO) and related monocyclic methylphosphates were prepared and the oxidation of BPS with MCPBA in chlorofrom or methanol was carried out to investigate the formation of reactive intermediates and reaction mechanism. BPO was the only product in chloroform while in methanol isomeric monocyclic methylphosphates were formed through opening of bicylic structure with subsequent phosphorylation of methanol by reactive intermediate formed in reaction. Formation of little amount of BPO was also observed. The structure of phosphorylating intermediate was probed with various spectroscopic methods and monocyclic methyl sulfenyl ester was suggested as a possible structure.

  • PDF

A Study on the Catalytic Property of Pt/γ-Al2O3 on the Dehydrocyclization of Paraffins (포화탄화수소의 탈수소고리화 반응에 관한 촉매특성 연구)

  • Lee, Santg-Hwa;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.569-575
    • /
    • 1993
  • The addition of Sn to Pt/${\gamma}$-$A1_2O_3$ catalyst greatly enhanced the activity and decreased the deactivation rate for the dehydrocyclization of paraffins. For the dehydrocyclization of n-octane, there appeared to be an optimal ratio of Pt:Sn=1:4 for 0.75 wt% Pt/${\gamma}$-$A1_2O_3$ catalyst. The addition of K to Pt/${\gamma}$-$A1_2O_3$ also produced a similar effect on the dehydrocyclization of n-hexane. In the case of n-octane, the addition of K led to a less selective catalyst.

  • PDF

A Study on the Ignition Characteristics of Gasoline due to Variation in Octane Number (옥탄가 변화에 따른 가솔린의 발화특성에 관한 연구)

  • Kim, Hyeong Seok;Kim, Won Kil;Choi, Yu Jung;Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2018
  • This study was conducted to assess the hazards of gasoline in relevance to the changes in octane numbers, and gasoline's spontaneous ignition temperature and instantaneous ignition temperature were measured. Spontaneous ignition temperature of regular gasoline was $301^{\circ}C$ for sample quantity of $100{\sim}125{\mu}{\ell}$. Spontaneous ignition temperature of middle gasoline was $380^{\circ}C$ for sample quantity of $125{\mu}{\ell}$ and that of premium gasoline was $400^{\circ}C$. As gasoline's octane numbers increased, their spontaneous ignition temperatures increased, and their instantaneous ignition temperature were almost identically $499^{\circ}C$ for sample quantity of $125{\mu}{\ell}$. In addition, activation energies of regular gasoline, middle gasoline, and premium gasoline were 10.48 Kcal/mol, 16.89 Kcal/mol, and 24.55 Kcal/mol respectively.

A Study on the Prediction of the Octane Number of Gasolines from the Carbon Type Structural Compositions by 13C-Nuclear Magnetic Resonance Spectroscopy (13C-NMR에 의해 결정된 탄소 유형별 구조적 조성으로부터 가솔린 옥탄가의 예측에 관한 연구)

  • Choi, Ju-Hwan;Chun, Yong-Jin;Choi, Ung-Su;Choi, Young-Sang;Kwon, Oh-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.753-759
    • /
    • 1993
  • The research and motor octane numbers (RON & MON, respectively) of a gasoline are dynamic measures of its quality of performance as a fuel. ASTM standard engine test methods (RON:ASTM D-2699, MON:ASTM D-2700) have been used for determining the octane numbers (RON,MON)of gasolines. But these methods have been widely criticized because their repeatability and reproducibility of the test method are very poor. In addition to these objections, the cost and operation time involved in measuring by the standard method led to searches for "non -engine" methods (Gas Chromatographic method, Nuclear Magnetic Resonance Spectroscopic method). In this study, we determined the carbon type structural compositions of the gasolines by $^{13}C-NMR$ spectroscopy and predicted the octane number (RON & MON) with good accuracy. we presented an assessment of the effects of molecular structural composition on octane numbers.

  • PDF

Solubilization of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution (C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일의 가용화에 관한 연구)

  • Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.219-225
    • /
    • 2007
  • The equilibrium solubilization capacity of pure hydrocarbon oils by 2.5 wt% $C_{12}E_8$ nonionic surfactant solution was measured at $30^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the molar solubilization ratio (MSR) for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in carbon number of the two hydrocarbon oils. Equilibrium solubilization tests for the two n-octane/n-nonane and n-nonane/n-decane mixture systems in $C_{12}E_8$ surfactant solutions suggest slightly selective solubilization in favor of n-octane, but the small difference in solubilization rates between two hydrocarbon oils does not allow ruling out non-selective solubilization for these particular systems. This is certainly not the case for the n-octane/n-decane mixture, for which selective solubilization was conclusively demonstrated by GC analysis data.

Laminar Flame Speed Model of Fuel Blends at Elevated Temperatures and Pressures (고온 고압에서 혼합연료의 층류화염속도 예측 모델에 대한 연구)

  • Byun, Jung Joo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.9-16
    • /
    • 2012
  • Iso-octane, n-heptane and their blends were tested in a constant volume combustion chamber to measure laminar flame speeds. The experimental apparatus was automatically controlled to enhance the accuracy and data acquisition speed. A large database of laminar flame speeds at elevated temperatures and pressures was established. From this database, laminar flame speeds of iso-octane, n-heptane and their blends were investigated and analysed to derive new correlation to predict laminar flame speeds at any blending ratio. The new flame speed model was successfully applied to these fuels with limited range of errors.

Effect of fuel octane number on knock characteristics in a spark-ignition engine (연료의 옥탄가 변화에 따른 스파크 점화기관의 노킹특성의 변화)

  • 이홍철;전광민
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.61-68
    • /
    • 1992
  • Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and it accompanys a high pitched metallic noise. Engine Knock is accompanied with a vibration of engine cylinder and when it is severe, it can cause major engine demage. Engine Knock is characterized in terms of knock crank angle, knock pressure, pressure jump and knock intensity. In this study, a 4-cylinder spark ignition engine was used for experiment and eighty consecutive cycles were analyzed statistically. The purpose of this study is to characterize spark ignition engine knock as a function of ignition timing and fuel research octane number. The result of this study can be summerized as follows. Knock occurrence angle approached TDC as ignition timing is advanced. Pressure and knock intensity gradually increased as spark timing is advanced. Mean knock occurence angle gradually approached TDC as fuel research octane number is decreased for identical spark timing. Knock intensity increased linearly as RON is decreased.

  • PDF

Synthesis of Azabicyclo[3.2.1]octane Skeleton of Tropane Alkaloid (트로판 알칼로이드의 아자비시크로[3.2.1]옥탄 골격합성)

  • Suh, Young-Ger;Choi, Young-Gi;Jung, Jae-Kyung;Min, Kyung-Hoon
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.18-21
    • /
    • 1997
  • Synthesis of an optically active azabicyclo[3.2.1]octane skeleton as a backbone of the tropane alkaloids has been achieved by employing intramolecular Mannich reaction. Utilizat ion of (R)-${\alpha}$-methylbenzylamine as a chiral auxiliary provided an excellent cyclization of amino dioxolane precursor. However, this auxiliary did not afford high asymmertic induction for the preparation of the optically active cyclization precursor.

  • PDF

An Environmentally Benign Synthesis of 1-Benzyl-4-aza-1-azonia-bicyclo[2.2.2]octane Tribromide and Its Application as an Efficient and Selective Reagent for Oxidation of Sulfides to Sulfoxides in Solution and Solvent-free Conditions

  • Pourmousavi, S.A.;Salehi, P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1332-1334
    • /
    • 2008
  • Stable crystalline 1-Benzyl-4-aza-1-azonia-bicyclo[2.2.2]octane tribromide (BABOT), can be readily synthesized from the reaction of the corresponding bromide with $HNO_3$ and aqueous KBr. Selective Oxidation of a variety of dialkyl and alkyl Aryl sulfides to the corresponding sulfoxides in high yield was achieved by this reagent in solution ($CH_3CN/H_2O$) and solvent free conditions. The reaction proceeds under neutral and mild conditions and can be carried out easily at room temperature with regeneration of BABOT. In this method purification of products is straightforward and no over oxidation to sulfone was noted.

Development of a Detailed Chemical Kinetic Reaction Mechanism of Surrogate Mixtures for Gasoline Fuel (가솔린 연료를 위한 대용혼합물의 상세한 화학반응 메카니즘 개발)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The oxidation of surrogate mixtures for gasoline fuel was studied numerically in perfectly stirred reactor(PSR) to develope the needed detailed reaction mechanism. The reaction mechanism was assembled with the mechanisms for the oxidation of iso-octane or kerosene. It was shown that the reaction model predicted reasonably well the concentration profiles of fuel and major species reported in the literature. As the addition of kerosene into iso-octane as fuel was increased, the concentrations of $C_2H_2$ and benzene became high. Especially benzene known as a carcinogen appeared at a very high concentration in the flue gases.