• Title/Summary/Keyword: Oceanic warming

Search Result 31, Processing Time 0.021 seconds

Variations of Sea Level and Sea Surface Temperature in Korean Seas by Topex/Poseidon and NOAA

  • Yoon, Hong-Joo;Kang, Heung-Soon;Lee, Bong-Sic;Jeong, Young-Deok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.880-883
    • /
    • 2006
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

  • PDF

Variations of Sea Level and Sea Surface Temperature in Korean Seas by Topex/Poseidon and NOAA

  • Yoon, Hong-Joo;Kang, Heung-Soon;Cho, Han-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.59-63
    • /
    • 2007
  • Altimeter (Topex/Poseidon) and AVHRR (NOAA) data were used to study the variations and correlations of Sea Level (SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea (Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

Long-term Variation in the Catch of Major Small Pelagic Fishes Related to Winter Warming in the South Sea, Korea

  • Lee, Seung-Jong;Go, You-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • The relationships among long-term climatic change in the southern part of the Korean peninsula, oceanic conditions of the South Sea, Korea, and winter catches of major small pelagic fishes were analyzed using 33 years of time-series data from 1971-2003. In the early 1990s, winter climatic conditions in the southern part of the Korean peninsula shifted to a warmer regime with higher air temperature, weaker wind speed, and lower relative humidity. Also, winter sea surface temperature (SST) became consistently higher in the South Sea. The annual catch of major small pelagic fishes in the South Sea increased dramatically in the mid 1990s, whereas the catch of total fishes decreased in the late 1980s. In particular, the winter catch started to increase markedly in the late 1980s, and has remained over 120,000 M/T since the late 1990s. Correlation analysis of the winter catch of major small pelagic fishes and environmental factors showed that catch was correlated with air temperature (r=0.468, P< 0.01), wind speed (r=-0.732, P< 0.01), relative humidity (r=-0.73l, P< 0.01), and SST (r=0.672, P< 0.01). Multiple regression analysis between the winter catch of major small pelagic fishes (Y) and environmental factors (X) resulted in the equation: $Y=-0.017-0.217\;X_3-0.486\;X_4+0.325\;X_5(R^2=0.754,\;P<0.000)$.

Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments

  • Hyun, Bonggil;Choi, Keun-Hyung;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Moon, Chang-Ho;Shin, Kyoungsoon
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1003-1012
    • /
    • 2014
  • We examined the combined impacts of future increases of $CO_2$ and temperature on the growth of four marine diatoms (Skeletonema costatum, Chaetoceros debilis, Chaetoceros didymus, Thalassiosira nordenskioeldii). The four strains were incubated under four different conditions: present ($pCO_2$: 400ppm, temperature: $20^{\circ}C$), acidification ($pCO_2$: 1000ppm, temperature: $20^{\circ}C$), global warming ($pCO_2$: 400ppm, temperature: $25^{\circ}C$), and greenhouse ($pCO_2$: 1000ppm, temperature: $25^{\circ}C$) conditions. Under the condition of higher temperatures, growth of S. costatum was suppressed, while C. debilis showed enhanced growth. Both C. didymus and T. nodenskioldii showed similar growth rates under current and elevated temperature. None of the four species appeared affected in their cell growth by elevated $CO_2$ concentrations. Chetoceros spp. showed increase of pH per unit fluorescence under elevated $CO_2$ concentrations, but no difference in pH from that under current conditions was observed for either S. costatum or T. nodenskioeldii, implying that Chetoceros spp. can take up more $CO_2$ per cell than the other two diatoms. Our results of cell growth and pH change per unit fluorescence suggest that both C. debilis and C. didymus are better adapted to future oceanic conditions of rising water temperature and $CO_2$ than are S. costatum and T. nodenskioeldii.

A Study on Flooding Prevention Scheme due to Sea Level Rise at Young-do Coast in Busan (부산 영도 해안의 해수면 상승에 따른 침수대책 연구)

  • Hong, Sung-Ki;Kang, Yong-Hoon;Lee, Han-Seok
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.409-418
    • /
    • 2013
  • On the assumption of the rise of sea level, the inundation vulnerabilities on coastal areas of Korea are evaluated in different ways. The propose of this study is to find out the influences of sea level rise caused by global warming at Young-do coastal area, and to suggest the prevention schemes against the flooding damage caused by the sea level rise. The potential rates of sea level rise are assumed and with these rates the inundation vulnerabilities are simulated using CAD program. With the virtual maps, as the results of the previous CAD simulation, this study attempts to suggest the flood prevention schemes for each sector of damage-expected coastal area.

New records of three dinophycean genera Dinophysis, Histioneis, and Parahistioneis (Dinophysiales, Dinophyceae) from coastal waters of Jeju Island, Korea

  • Lee, Joon-Baek;Kim, Hyeung-Sin;Chung, Han-Sik
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.599-609
    • /
    • 2015
  • A total of 19 species of three genera Dinophysis, Histioneis, and Parahistioneis of the family Dinophysaceae are reported here from samples obtained using a 20-µm mesh net from June 2006 to December 2014 around Jeju Island including the East China Sea, and 16 of these species are new to Korean waters. A checklist of the three genera of dinoflagellates reported from coastal and oceanic Korean waters is presented. Short descriptions and synonyms are given for each species. The dinoflagellates of the family Dinophysaceae belong to mostly marine species, and include many tropical and/or subtropical species. Recently, the composition of dinoflagellate species has changed around Jeju Island as well as in Korean waters due to global warming and climate change. Tropical and subtropical dinoflagellates occur frequently in the coastal waters of Jeju Island, which reflects the ecosystem shift around the sea adjacent to Jeju Island from a temperate to a subtropical / tropical region.

Reproduction of Ocean Circulation around Korean Peninsula by using a Mesoscale Ocean Circulation Model (중규모 해양모형을 이용한 한반도 주변 해역 해양순환 재현)

  • Lee, Hae-Jin;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.186-194
    • /
    • 2000
  • In this study, the oceanic responses to given atmospheric boundary conditions are investigated using a mesoscale ocean circulation model. The numerical experiments are divided into two parts: One is, so called, spin-up experiment and the other is reproduction experiment. The spin-up experiment simulates climatic state of ocean by integrating the ocean model with upper boundary conditions of the monthly mean atmospheric climate data. In the reproduction experiment, for the reproduction of major oceanic changes around Korean Peninsula during the period of 1980-1998 (19 years), the model has been integrated under the boundary condition of the 19year monthly mean atmosphere data. The spined-up state of ocean generated from the spin-up experiment is assigned to the initial boundary condition of the reproduction experiment. In the spin-up experiment, the model properly simulates the major features of circulation structure around Korean Peninsula; such as separation of East Korean Warm Current (EKWC), formation of the polar front, cold water band associated with the small scale eddies in the East Sea, the formation of front along west coast, and the seasonal variation of circulation pattern caused by changing upwind current in the West Sea. In the reproduction experiment, the model has shown the interannual sea surface temperature variations and a warming trend of about 0.5$^{\circ}$C during the period around Korean Peninsula, as in the case of the observation. Therefore, it is concluded that the model is capable of simulating not only the mean states but also the variabilities of ocean under the given atmosphere boundary conditions.

  • PDF

Status of Ocean Observation using Wave Glider (무인해상자율로봇(Wave Glider)을 이용한 해양관측 현황)

  • Son, Young Baek;Moh, Taejun;Jung, Seom-Kyu;Hwnag, Jae Dong;Oh, Hyunju;Kim, Sang-Hyun;Ryu, Joo-Hyung;Cho, Jin Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.419-429
    • /
    • 2018
  • An unmanned autonomous maritime surface system can move the vehicle to the areas for observing the ocean accidents, disasters, and severe weather conditions. Detection and monitoring technologies have been developed by the converging of the regional and local surveillance system. Wave Glider, one of the autonomous maritime surface systems, is ocean-wave propelled autonomous surface vehicle and controlled using Iridium satellite communication. In this study, we carried out two-time Wave Glider observations for 2016 and 2017 summer in the East China Sea that the area was influenced by low-salinity water. We observed the sea surface warming effect due to the low-salinity water using the regional (satellite) and local (Wave Glider) surveillance system. We also monitored the effect of the typhoon and understood the change of the ocean-atmosphere environments in real-time. New unmanned surface system with autonomous system and high endurance structure can measure comprehensively and usefully a long observation in complicated ocean environments because of connecting with other surveillance systems.

Numerical Simulations of Storm Surge/Coastal Flooding at Mokpo Coastal Zone by MIKE21 Model (MIKE 21 모형을 이용한 목포해역 해일/범람모의)

  • Moon, Seung-Rok;Park, Seon-Jung;Kang, Ju-Whan;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.348-359
    • /
    • 2006
  • The city of Mokpo suffers lowland inundation damages by sea water flooding even without harsh weather like a typhoon, due to the low level urban infrastructure facilities, oceanic environmental changes by constructions of seadike/seawall and sea level rise caused by global warming. This study performs constructing the simulation system which employs the MIKE21 software. And the system is applied to several typhoon- induced surges which had resulted in inundation at Mokpo. Virtual situation of flooding is simulated in case 59 cm of surge height, which had been occurred actually by RUSA(0215), coincides with Approx. H.H.W. Then the water level of 545 cm corresponds to the extreme high water level(544 cm) for 10 year return period after the construction of Geumho seawall. The results show rapid and broad inundation at Inner-Port, requiring additional preparations for flood protections.

Winter Warming and Long-term Variation in Catch of Yellowtail (Seriola quinqueradiata) in the South Sea, Korea (겨울철 온난화와 남해 방어 어획량의 장기변동)

  • Lee, Seung-Jong;Go, You-Bong
    • Korean Journal of Ichthyology
    • /
    • v.18 no.4
    • /
    • pp.319-328
    • /
    • 2006
  • The relationships among long-term climate variation at the southern part of the Korean peninsula, oceanic conditions in the South Sea, Korea, and variation in the winter catch of yellowtail (Seriola quinqueradiata) were analyzed using 32 years of time-series data from 1971~2002. In the early 1990s, winter climatic conditions at the southern part of Korean peninsula shifted from a cool to a warm regime with higher air temperature, relative weak wind speed, and lower relative humidity. Also, the winter water temperature at 50 m depth became consistently higher in the South Sea. The annual winter catch of yellowtail in the South Sea increased dramatically in the early 1990s, as did that of anchovy, which is the major food organism for yellowtail. From the results of correlation analysis, we found that the winter catch of yellowtail was more closely related to the increasing of air temperature, water temperature and anchovy catch.