• Title/Summary/Keyword: Ocean wave information

Search Result 207, Processing Time 0.027 seconds

Physical Model Experiment for Estimating Wave Overtopping on a Vertical Seawall under Regular Wave Conditions for On-Site Measurements (현장 월파계측을 위한 규칙파 조건에서 직립식 호안의 월파량 추정에 관한 모형실험)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.75-83
    • /
    • 2023
  • Apart from implementing hardware solutions like raising the crest freeboard of coastal structures to efficiently counter wave-overtopping, there is a simultaneous requirement for software-driven disaster mitigation strategies. These tactics involve the swift and accurate dissemination of wave-overtopping information to the inland regions of coastal zones, enabling the regulation of evacuation procedures and movement. In this study, a method was proposed to estimate wave-overtopping by utilizing the temporal variation of wave heights exceeding the structure's crown level, with the aim of developing an on-site wave measurement system for providing wave-overtopping information in the field. Laboratory model experiments were conducted on vertical seawall structures to measure wave-overtopping volumes and wave runup heights under different wave conditions and structural freeboard variations. By assuming that the velocity of water inundation on the top of the structure during wave-overtopping events is equivalent to the long-wave velocity, an overtopping discharge coefficient was introduced. This coefficient was utilized to estimate the rate of wave-overtopping based on the temporal changes in wave runup heights measured at the top of the structure. Upon reasonably calculating the overtopping discharge coefficient, it was verified that the estimation of wave-overtopping could be achieved solely based on the wave runup heights.

Study on Development of Surge-Tide-Wave Coupling Numerical Model for Storm Surge Prediction (해일-조석-파랑을 결합한 폭풍해일 수치모델 개발에 관한 연구)

  • Park, Jong-Kil;Kim, Myung-Kyu;Kim, Dong-Cheol;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • IIn this study, a wave-surge-tide coupling numerical model was developed to consider nonlinear interaction. Then, this model was applied and calculations were made for a storm surge on the southeast coast. The southeast coast was damaged by typhoon "Maemi" in 2003. In this study, we used a nearshore wind wave model called SWAN (Simulating WAves Nearshore). In addition, the Meyer model was used for the typhoon model, along with an ocean circulation model called POM (Princeton Ocean Model). The wave-surge-tide coupling numerical model could calculate exact parameters when each model was changed to consider the nonlinear interaction.

PACIFIC EXTREME WIND AND WAVE CONDITIONS OBSERVED BY SYNTHETIC APERTURE RADAR

  • Lehner, Susanne;Reppucci, Antonio;Schulz-Stellenfleth, Johannes;Yang, Chang-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.390-393
    • /
    • 2006
  • It is well known that synthetic aperture radar (SAR) provides information on ocean winds and surface waves. SAR data are of particularly high value in extreme weather conditions, as radar is able to penetrate the clouds providing information on different ocean surface processes. In this presentation some recent results on SAR observation of extreme wind and ocean wave conditions is summarised. Particular emphasize is put on the investigation of typhoons and extratropical cyclones in the North Pacific. The study is based on the use of ENVISAT ASAR wide swath images. Wide swath and scansar data are well suited for a detailed investigation of cyclones. Several examples like, e.g., typhoon Talim will be presented, demonstrating that these data provide valuable information on the two dimensional structure of the both the wind and the ocean wave field. Comparisons of the SAR observation with parametric and numerical model data will be discussed. Some limitations of standard imaging models like, e.g., CMOD5 for the use in extreme wind conditions are explained and modifications are proposed. Finally the study summarizes the capabilities of new high resolution TerraSAR-X mission to be launched in October 2006 with respect to the monitoring of extreme weather conditions. The mission will provide a spatialresolution up to 1m and has full polarimetric capabilities.

  • PDF

Establishment of Wave Information Network of Korea (WINK) (전국파랑관측자료 제공시스템 WINK 구축)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Ryu, Kyung-Ho;Back, Jong-Dai;Choi, Il-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.326-336
    • /
    • 2018
  • Continuous measurement of nearshore waves around Korea over long period is very demanding to setup plans for prevention of disasters of port and coastal structures. In this respect, a new web-based system, termed as WINK, was established, which collects nearshore wave data from Korea Meteorological Agency (KMA), Korea Hydrographic and Oceanographic Agency (KHOA), and Ministry of Oceans and Fisheries (MOF) and provide them after quality control of the data. This paper describes technical aspects regarding collection and selection of the wave observation data, construction of wave hindcasting data, the methodology of quality control for the selected wave data, and overall process of building the web-based data providing system.

The Characteristics of Wave Statistical Data and Quality Assurance (파랑 통계자료의 특성과 신뢰성 검토)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.63-70
    • /
    • 2009
  • This paper discusses the influence on long-tenn predictions of the ship response in ocean by using the Global Wave Statistics data, GWS, and wave information from the remote sensing satellites. GWS's standard scatter diagrams of significant wave height and zero-crossing wave period are suggested to be corrected to a round number of 0.01/1000 fitted with a statistical analytic model of the conditional lognormal distribution for zero-crossing wave period. The GEOSAT satellite data are utilized which presented by I. R. Young and G. J. Holland (1996, named as GEOSAT data). At first, qualities of this data are investigated, and statistical characteristic trends are studied by means of applying known probability distribution functions. The wave height data of GEOSAT are compared to the data observed onboard merchant ships, the data observed by measure instrument installed on the ocean-going container ship and so on. To execute a long-tenn prediction of ship response, joint probability functions between wave height and wave period are introduced, therefore long-term statistical predictions are executed by using the functions.

  • PDF

Measurement of Dispersion Relation of Plasma Wave (플라즈마 파동의 분산관계 측정에 관한 연구)

  • Jeong, Jung-Hyeon;Lee, Jong-Gyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.248-258
    • /
    • 1997
  • The analytical solutions of the Fraunhofer Diffraction(FD) theory and the principle for measurement of the dispersion relation of plasma wave is presented. Especially, the method for measurement of low-frequency wave is discussed. The wavenumbers of the density fluctuations are obtained from the curve fitting between the expremental FD profile and theoretical one for each frequency component. In measurement of the wavenumber of the low -frequency region, the information of the wavenumber is easily obtained from the ratio of the intensity at = 0 to the intensity at =0.5. The millimeter wave FD apparatus was designed to measure low-frequency density fluctuations. The determined wavenumbers are in the range of =0.1~ 1.0cm. Thus, the millimeter wave FD method was shown to be useful for the measurement of low-frequency density fluctuations, which are impossible to be measured by using a convention. Thomson scattering. The obtained dispersion relations will be useful information for plasma waves.

  • PDF

Design Wave Period Estimation Using the Wave Height Information (파고 정보를 이용한 설계주기 추정)

  • Hong-Yeon Cho;Weon Mu Jeong;Ju Whan Kang;Gi-Seop Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.84-94
    • /
    • 2023
  • The wave height and period regression curve is widely used to estimate the design wave period. In this study, the parameters of the curves are estimated, compared, and evaluated using the linear, robust linear, and nonlinear regression methods, respectively. The data used in the design wave height estimation are the annual maxima (AM) wave height and period data sets divided by typhoon and non-typhoon conditions, provided by the Ministry of Oceans and Fisheries (2019). The estimation parameters show significant differences in the local coastal waters and the estimation methods. The estimation parameters based on the Suh et al. (2008, 2010) method show the apparent bias, under-estimation in the intercept (scale) parameter, and over-estimation in the slope (exponent) parameter, respectively.

Ocean Wave Forecasting and Hindercasting Method to Support for Navigational Safety of Ship (선박의 항행안전지원을 위한 파랑추산에 관한 연구)

  • Shin, Seung-Ho;Hashimoto, Noriaki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2003
  • In order to improve navigational safety of ships, an ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface wind first and then carried out ocean wave hindercasting simulations according to the routes the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed iou pressure system Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, wave period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

Wave information retrieval algorithm based on iterative refinement (반복적 보정에 의한 파랑정보 추출 기법)

  • Kim, Jin-soo;Lee, Byung-Gil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Ocean wave parameters are important for safety and efficiency of operation and routing of marine traffic. In this paper, by using X-band marine radar, we try to develop an effective algorithm for collecting ocean surface information such as current velocity, wave parameters. Specifically, by exploiting iterative refinement flow instead of using fixed control schemes, an effective algorithm is designed in such a way that it can not only compute efficiently the optimized current velocity but also introduce new cost function in an optimized way. Experimental results show that the proposed algorithm is very effective in retrieving the wave information compared to the conventional algorithms.

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF