• Title/Summary/Keyword: Ocean observation

Search Result 827, Processing Time 0.032 seconds

Offshore Wave, Tsunami and Tide Observation Using GPS Buoy

  • Nagai, Toshihiko;Ogawa, Hideaki;Terada, Yukihiro;Kato, Teruyuki;Kudaka, Masanobu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.137-142
    • /
    • 2003
  • Offshore observation of tsunami and storm surge before arriving to the coast is very important fur coastal disaster prevention. But up to ten years ago, coastal tide stations had been supposed to be the only means to observe tsunami and storm surge profile, fir difficulty of offshore observation (Goda.et.al., 2002). Recently seabed installed coastal wave gauges have been repeatedly reported to successfully observe various tsunami profiles by conducting continuous data acquisition (Goda.et.al., 2001 : Nagai, 2002a; Nagai.et.al, 1996, 2000, 2002b). (omitted)

  • PDF

Global Ocean Observation with ARGO Floats : Introduction to ARGO Program (ARGO 플로트를 이용한 전지구 해양관측 : ARGO 프로그램 소개)

  • Lee, Homan;Chang, You-Soon;Kim, Tae-Hee;Kim, Ji-Ho;Youn, Yung-Hoon;Seo, Jang-Won;Seo, Tae-Gun
    • Atmosphere
    • /
    • v.14 no.1
    • /
    • pp.4-23
    • /
    • 2004
  • To monitor the world's oceans and understand the role of the oceans for climate change, an Array for Real-time Geostrophic Oceanography (ARGO) program has been carried out since year 2000. Autonomous profiling floats of about 820 are reporting the vertical temperature, salinity, and pressure profiles of the upper 2000 m underwater at regular time intervals. Meteorological Research Institute (METRI) of Korea Meteorological Administration (KMA) launched 45 floats at the East Sea and the western Pacific to understand characteristics of water properties and develop the global ocean observation system as a part of international cooperation project. In this study, we introduce ARGO program, METRI-ARGO and the features of APEX float itself and their data formats. We also describe the significant points to be considered for using ARGO data.

PACIFIC EXTREME WIND AND WAVE CONDITIONS OBSERVED BY SYNTHETIC APERTURE RADAR

  • Lehner, Susanne;Reppucci, Antonio;Schulz-Stellenfleth, Johannes;Yang, Chang-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.390-393
    • /
    • 2006
  • It is well known that synthetic aperture radar (SAR) provides information on ocean winds and surface waves. SAR data are of particularly high value in extreme weather conditions, as radar is able to penetrate the clouds providing information on different ocean surface processes. In this presentation some recent results on SAR observation of extreme wind and ocean wave conditions is summarised. Particular emphasize is put on the investigation of typhoons and extratropical cyclones in the North Pacific. The study is based on the use of ENVISAT ASAR wide swath images. Wide swath and scansar data are well suited for a detailed investigation of cyclones. Several examples like, e.g., typhoon Talim will be presented, demonstrating that these data provide valuable information on the two dimensional structure of the both the wind and the ocean wave field. Comparisons of the SAR observation with parametric and numerical model data will be discussed. Some limitations of standard imaging models like, e.g., CMOD5 for the use in extreme wind conditions are explained and modifications are proposed. Finally the study summarizes the capabilities of new high resolution TerraSAR-X mission to be launched in October 2006 with respect to the monitoring of extreme weather conditions. The mission will provide a spatialresolution up to 1m and has full polarimetric capabilities.

  • PDF

Characteristics of the Mission Planning for COMS Normal Operation (천리안위성 정규 운영에 대한 임무계획 특성)

  • Cho, Young-Min;Jo, Hye-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.163-172
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2^{\circ}$ East longitude on the geostationary orbit and currently under normal operation service since April 2011. For the sake of the executions of the meteorological and the ocean mission as well as the satellite control and management, the satellite mission planning is daily performed. The satellite mission plans are sent to the satellite by the real-time operation and the satellite executes the missions as per the mission plans. In this paper the mission planning for COMS normal operation is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, and seasonal mission planning activities. The successful mission planning is also confirmed with the first one-year normal operation results.

Development of a LoRaWAN-based Real-time Ocean-current Draft Observation System using a multi-GPS Triangulation Method Correction Algorithm (다중 GPS 삼각측량보정법을 이용한 LoRaWAN기반 실시간 해류관측시스템 개발)

  • Kang, Young-Gwan;Lee, Woo-Jin;Yim, Jae-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2022
  • Herein, we propose a LoRaWAN-based small draft system that can measure the ocean current flow (speed, direction, and distance) in real time at the request of the Coast Guard to develop a device that can promptly find survivors at sea. This system has been implemented and verified in the early stages of rescue after maritime vessel accidents, which are frequent. GPS signals often transmit considerable errors, so correction algorithms using the improved triangulation method algorithm are required to accurately indicate the direction of currents in real time. This paper is structured in the following manner. The introduction section elucidates rescue activities in the case of a maritime accident. Chapter 2 explains the characteristics and main parameters of the GPS surveying technique and LoRaWAN communication, which are related studies. It explains and expands on the critical distance error correction algorithm for GPS signals and its improvement. Chapter 3 discusses the design and analysis of small draft buoys. Chapter 4 presents the testing and validation of the implemented system in both onshore and offshore environments. Finally, Section 5 concludes the study with the expected impact and effects in the future.

Analysis of the Observation Data for Winter-Season High Waves Occurred in the West Sea of Korea (우리나라 서해에서 발생한 겨울철 고파의 관측자료 분석)

  • Oh, Sang-Ho;Jeong, Weon-Mu;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.168-174
    • /
    • 2015
  • Characteristics of high waves occurred in winter season on the west coast of Korea were investigated by analyzing the wave data observed at five observation locations. Records of four different high waves were subjected to the analysis together with the corresponding meteorological data during those time periods. The significant wave height reached its maximum of 6.42 m on December 4th, 2005. It was clarified that the high waves occurred due to strong wind fields that were formed over the west sea of Korea when the extra-tropical cyclone was excessively developed. Characteristics of the high waves generated in the west sea seemed to be predominantly wind sea as the temporal variation of the wave height at the coast were closely related to those of the wind speed measured at neighboring weather stations.

Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in the East Sea (동해 심층수 개발해역의 오염부하량 해석과 해동변동)

  • LEE IN-CHEOL;YOON BAN-SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.14-19
    • /
    • 2005
  • As a basic study for establishing the input conditions of a forecasting/estimating model, used for deep-sea water drainage to the ocean, this study was carried out as follows: 1) estimating the amount of river discharge and pollutant loads into the developing region of deep sea water in the East Sea, Korea, 2) a field observation of tidal current, vertical water temperature, and salinity distribution, 3) 3-D numerical experiment of tidal current to analyze the physical oceanographic status. The amount of river discharge flowing into this study area was estimated at about $462.7{\times}103 m\^3/day$ of daily mean in 2002. Annual mean pollutant load of COD, TN, and TP were estimated at 7.02 ton-COD/day, 4.06 ton-TN/day, and 0.39 ton/day, respectively. Field observation of tidal current normally shows 20-40cm/sec of current velocity at the surface layer, and it decreases under 20cm/sec as the water depth increases. We also found a stratification condition at around 30m water depth in the observation area. The differences in water temperature and salinity, between the surface layer and the bottom layer, were about 18 C and 0.8 psu, respectively. On the other hand, we found a definite trend of 34 psu salinity water mass in the deep sea region.

In-orbit Stray Light Analysis for Step and Stare observation at Geostationary Orbit

  • Oh, Eunsong;Hong, Jinsuk;Ahn, Ki-Beom;Cho, Seongick;Ryu, Joo-Hyung;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.218.2-218.2
    • /
    • 2012
  • In the remote sensing researches, the reflected bright source such as snow, cloud have effects on the image quality of wanted signal. Even though those signal from bright source are adjusted in corresponding pixel level with atmospheric correction algorithm or radiometric correction, those can be problem to the nearby signal as one of the stray light source. Especially, in the step and stare observational method which makes one mosaic image with several snap shots, one of target area can affect next to the other snap shot each other. Presented in this paper focused on the stray light analysis from unwanted reflected bright source for geostationary ocean color sensor. The stray light effect for total 16 slot images each other were performed according to 8 band filters. For the realistic simulation, we constructed system modeling with integrated ray tracing technique which realizes the same space time in the remote sensing observation among the Sun, the Earth, and the satellite. Computed stray light effect in the results of paper demonstrates the distinguishable radiance value at the specific time and space.

  • PDF

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.