• 제목/요약/키워드: Ocean floater

검색결과 64건 처리시간 0.02초

Dynamic and structural responses of a submerged floating tunnel under extreme wave conditions

  • Jin, Chungkuk;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.413-433
    • /
    • 2017
  • The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • 제13권3호
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

플로터를 이용한 슬로싱 충격하중 저감효과가 선체운동에 미치는 영향 (Effect on Vessel Motion Caused by Mitigation of Sloshing Impact Loads using Floaters)

  • 남정우;김경성;황성철;허재경;박종천
    • 한국해양공학회지
    • /
    • 제26권4호
    • /
    • pp.50-56
    • /
    • 2012
  • When a liquid cargo tank is partially filled with fluid, internal impact loads can be occurred from the vessel's motions. In this study, liquid sloshing problems with a thin top layer of particles with a lighter density than water and the coupling effects of the liquid-sloshing/vessel-motion were investigated in order to reduce the sloshing-induced impact loads. The PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method for solving the liquid motion inside a tank and the CHARM3D BEM (Boundary Element Method) based time-domain ship motion analysis program for vessel-motion simulation were coupled. From the simulation results, we could see that the floaters seemed to be quite effective at reducing the sloshing impact loads in the case of tank-only sloshing problems, but not as much for the coupling problem with vessel motion.

해양 파력 발전 시스템 설계를 위한 부유체 거동에 관한 연구 (Study on the Motion of Floater Structure for Design of Wave Energy Generation in Ocean)

  • ;;박영규;정호윤;최윤환;이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.632-639
    • /
    • 2011
  • 해양 파력 발전 시스템의 설계를 위하여 본 연구에서는 6-자유도운동해석 기법을 적용한 3차원 CFD 해석으로 두 개의 부유체에 대한 거동을 유입되는 파의 성질에 따라 해석하였다. 수조모델내에서의 파의 생성형상을 현재 실험에서 가장 많이 사용되는 피스톤 형식의 조파기와 동일한 형태의 파를 생성하였으나 얕은 수심으로 인하여 바닥면에서 생성되는 에크만 경계층에 의해 파의 에너지가 감쇄되는 현상을 보였다. 생성된 파를 이용하여 파장에 따른 부유체의 거동을 계산한 결과 파장이 5m인 경우 부유체의 최대 진폭은 0.3m, 파장 1m인 경우 최소 진폭은 0.15m 그리고 파장 6m인 경우 부유체간 최대 거리는 1.06m로 계산되었다.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

Numerical studies on flow-induced motions of a semi-submersible with three circular columns

  • Tian, Chenling;Liu, Mingyue;Xiao, Longfei;Lu, Haining;Wang, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.599-616
    • /
    • 2021
  • The semi-submersible with three circular columns is an original concept of efficient multifunctional platform, which can be used for marginal oil, gas field, and Floater of Wind Turbines (FOWT). However, under certain flow conditions, especially in uniform current with specific velocities, the eddies will alternatively form and drop behind columns, resulting in the fluctuating lift force and drag force. Consequently, the semi-submersible will subject to the Flow-Induced Motions (FIM). Based on the Detached Eddy Simulation (DES) method, the numerical studies were carried out to understand the FIM characteristics of the three-column semi-submersible at two different parameters, i.e., current incidences (0°, 30°, and 60°-incidences) and reduced velocities (4 ≤ Ur ≤ 14). The results indicate that the lock-in range of 6 ≤ Ur ≤ 10 for the transverse motions is presented, and the largest transverse non-dimensional nominal amplitude is observed at 60°-incidence, with a value of Ay/D = 0:481. The largest yaw amplitude Ayaw is around 3.0° at 0°-incidence in the range of 8 ≤ Ur ≤ 12. The motion magnitude is basically the same as that of a four-column semi-submersible. However, smaller responses are presented compared to those of the three-column systems revealing the mitigation effect of the pontoon on FIM.

해상 LNG 벙커링 터미널용 파일 가이드 계류 시스템 설계: 싱가포르 항의 사례 연구 (Design of Pile-Guide Mooring System for Offshore LNG Bunkering Terminal: A Case Study for Singapore Port)

  • 이성엽;장대준
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.379-387
    • /
    • 2017
  • In this study, a pile-guide mooring system (PGMS) was designed for an offshore liquefied natural gas bunkering terminal (LNG-BT), which is an essential infrastructure for large LNG-fuelled ships. The PGMS consisted of guide piles to restrict five motions of the floater, except for heave, as well as a seabed truss structure to support the guide piles and foundation piles to fix the system to the seabed. Singapore port was considered for a case study because it is a highly probable ports for LNG bunkering projects. The wave height, current speed, and wind speed in Singapore port were investigated to calculate the environmental loads acting on the hull and PGMS. A load and resistance factor approach was used for the structural design, and a finite element analysis was performed for design verification. The steel usage of the PGMS was analyzed and compared with the material usage of a gravity-based structure under similar LNG capacity and water depth criteria. This paper also describes the water depth limit and wave conditions of the PGMS based on estimation of the initial investment and the present value profit difference. It suggests a suitable LNG-BT support system for various design conditions.

부유체-균형추 파력발전장치의 전력에 대한 이론적 연구 (Theatrical Research an Generated Power of Float-Counterweight Wave Converters)

  • 이성범;이승건;문병영
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.26-32
    • /
    • 2015
  • The authors are developing a motion of floater body type wave energy converter of the float-counterweight system. This consists of the driving pulley, wire, float and counterweight suspended from idler pulleys and rachet mechanism. Though it has succeeded in solving the major structural strength problem in which the floats would slam against adjacent structure(s) by wave load acting horizontally. In order to overcome this problem. We propose a new system in which the wire transmitting the power is wound around the pulleys and the float receiving the wave power is pulled by the wire from both its upper and lower ends to avoid the occurrence of slackening during the wave cycle. In the paper, we developed the dynamics model for the proposed system. Energy gain has been calculated for realistic wave conditions and compared with the original float-counterweight device. The important differences from the float-counterweight system are that (1) both upward and downward motions of water surface can be utilized without problem. (2) slackening of energy gain and wire tension are effectively suppressed, and (4) for the same time averaged energy gain, the maximum wire tension is fairly lowered.

Parametric investigation involving response reduction for a semi-submersible floater with shape alteration, stepping, and tilting of columns and pontoons

  • Anand B. Vishnu;Abdul M. Akbar
    • Ocean Systems Engineering
    • /
    • 제14권3호
    • /
    • pp.261-276
    • /
    • 2024
  • Numerical investigation was carried out to analyze the hydrodynamic response of 4-column semi-submersible floaters, incorporating variations such as stepping and alterations in the shape/geometry of columns and pontoons, as well as tilting of main columns. Utilizing Ansys-AQWA, a hydrodynamic software based on panel method, simulations were executed for these scenarios. The simulations yielded insights into responses, excitation forces/moments, and pressure on the structure, facilitating a comparison between the models through a parametric study. It was observed that stepping of pontoons and tilting of columns led to reduced responses, forces, and pressures, reaching balance through appropriate stepping and tilting. Additionally, altering the geometry of columns and pontoons indicated the potential benefits of employing elliptical pontoons and pentagonal columns for enhanced response control.