• Title/Summary/Keyword: Ocean diffusion

Search Result 232, Processing Time 0.026 seconds

Analytical Solutions for Predicting Movement Rate of Submerged Mound (수중둔덕의 이동율 예측을 위한 해석해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 1998
  • Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

  • PDF

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

A Standard Guide to Physical Oceanographic Survey of the Effect of Thermal Discharge from a Nuclear Power Plant (원자력발전소 온배수 영향 해양물리분야 조사의 표준지침)

  • Lee, Jae-Hak;Ro, Young-Jae;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • The methods of physical oceanographic surveys to examine the effect of thermal discharge from nuclear power plants in Korea have been reviewed and a standard guide to the survey is proposed. It is desirable that in situ observation and numerical thermal diffusion modeling are conducted simultaneously to describe the variation in temperature distribution affected by thermal discharge from a power plant because any observation or numerical modeling alone has limits to do so quantitatively. It is suggested that the field observation must be based on the concept of heat budget modeling considering all artificial and natural heat sources/sinks around the power plant. Any results from numerical modeling must reach to a certain statistical significance level to use for a standard temperature distribution. In addition, the development of standard numerical codes is proposed to improve the problems shown in the past numerical circulation and diffusion modelling.

Analysis of Chloride ion Penetration for In-Situation Harbor Concrete Structures (현장 항만 콘크리트 구조물에 대한 염소이온 침투 해석)

  • Han Sang-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.751-760
    • /
    • 2005
  • The chloride penetration model, which considers diffusion and sorption, is proposed. The FEM program developed on the basis of the diffusion and sorption model provides the estimation of chloride concentration variation according to cyclic humidity and temperature. The humidity diffusion analysis is carried out, and the chloride ion diffusion and sorption analysis are conducted on the basis of the pre-estimated humidity data in each element. Each element has different variables at different ages and locations in analysis. At early ages, the difference of relative humidity between inner and outer concretes causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference of relative humidity between inner md outer concretes with age, the effect of sorption on the chloride ion penetration decreases with age. The cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and increases the quantity of chloride ion around steel at later ages. Therefore, the in-situ analysis of chloride ion Penetration for harbor concrete structures must be Performed considering the cyclic humidity conditionandthelongtermsorption.

Evaluation on Sensitivity and Approximate Modeling of Fire-Resistance Performance for A60 Class Deck Penetration Piece Using Heat-Transfer Analysis and Fire Test

  • Park, Woo Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Mixing Process of Double Diffusive Salt Wedge (이중확산의 영향을 받는 염수침입의 혼합과정 연구)

  • Hwang, Jin-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • Salt wedge into the river from the sea or fresh water flume (fresh wedge) in the ocean from the sea has density current characteristics. However, when temperature and salinity simultaneously determine the density of wedges, one of salinity and temperature can distributed in the reversed profiles against gravity, even though the density profile is stable. In this case, the double diffusive process is critical in determining mixing rate. The present work studies relative contribution of shear driven mechanical mixing component and double diffusive layering process, when warm salty denser water is introduced into the cold fresh lighter water column. Laboratory experiment releases warm salty denser water into cold fresh lighter water controlling discharge amount to achieve the steady state of density current. When longitudinal density rate becomes 15, the released amount ratio of salt and heat changes sharply and in the releasing point, vigorous mixing occurs with increase of discharged amount due to double diffusion. Double diffusion distabilizes gravitational stability and enhances the mixing rate up to $6{\times}10$ times at the lower density ratio comparing to the higher density ratio.

  • PDF

Parameter Estimation of Coastal Water Quality Model Using the Inverse Theory (역산이론을 이용한 연안 수질모형의 매개변수 추정)

  • Cho, Hong-Yeon;Cho, Bum-Jun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • Typical water quality (WQ) parameters defined in the governing equation of the WQ model are the pollutant loads from atmosphere and watersheds, pollutant release rates from sediment, diffusion coefficient and reaction coefficient etc. The direct measurement of these parameters is very difficult as well as requires high cost. In this study, the pollutant budget equation including these parameters was used to construct the linear simultaneous equations. Based on these equations, the inverse problems were constructed and WQ parameter estimation method minimizing the sum of squared errors between the computed and observed amounts of the mass changes was suggested. WQ parameters, i.e., the atmospheric pollutant loads, sediment release rates, diffusion coefficients and reaction coefficient, were estimated using .this method by utilizing the vertical concentration profile data which has been observed in Cheonsu Bay and Ulsan Port. Values of the estimated parameters show a large temporal variation. However, this technique is persuasive in that the RHS (root mean square) error was less than $5.0\%$ of the observed value ranges and the agreement index was greater than 0.95.

On the Seasonal Transports of Freshwater and Salt in the Tropical Atlantic Ocean (열대 대서양에서의 계절별 담수 및 염분의 수송)

  • Jung-Moon Yoo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.1.1-15
    • /
    • 1994
  • The transports of the seasonal freshwater and salt from surface to 500 m depth in the tropical Atlantic Ocean are derived from the equations of the continuity and saltconservation, respectively. The freshwater transport is obtained by southward integration of the divergence of surface freshwater flux, using climatological freshwater(i. e. precipitation, evaporation, and river discharge) data. The annual freshwater transport is northward, ranging from 0 Sv near the equator to 0.3 Sv at $12^{\circ}{\;}N{\;}and{\;}20^{\circ}{\;}S$. The seasonal meridional transport amounts of freshwater range from 1.35 Sv to-0.45 Sv. The strong northward freshwater transports prevail for the intraseasonal period summer to fall. This seasonal cycle is caused by the shifts of the ITCZ as well as the changes in the local freshwater storage. Annual and seasonal salt transports are calculated from objectively analyzed historical (1900-86) salinity observations. The annual salt flux in the ocean zero, showing that the salt flux by horizontal advection balances the flux by horizontal diffusion. The salt flux due to the diffusion is northward, and has a maximum of $5{\;}{\times}{\;}10^6kg/s$ at 15oN. Seasonal transport amounts of salt range from $30{\;}{\times}{\;}10^6kg/s{\;}to{\;}-35{\;}{\times}10^6kg/s$. The direction of the seasonal salt transports is northward except for the intraseasonal period summer to fall.

  • PDF