• Title/Summary/Keyword: Ocean current

Search Result 2,128, Processing Time 0.028 seconds

Ocean Current Power Parks using Garyuk Draining Sluices of Saemankeum (새만금 가력배수갑문을 이용한 해류발전단지)

  • Jang, Kyungsoo;Lee, Jungeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.235.1-235.1
    • /
    • 2010
  • Two ocean current power parks are suggested in the front and back of the Garyuk draining sluices of Saemankeum in Korea. They are characterized by installing a plurality of ocean current turbine generators which are arranged in five rows respectively in the land-side ocean current power park behind the Garyuk draining sluices and in the sea-side ocean current power park before the Garyuk draining sluices, generating electricity using the ocean current flowing through the Garyuk draining sluices in the ebbs and tides of Yellow sea. The potential energy of tidal difference of 2.611m at neap in Saemankeum can be converted into the kinetic energy of high speed ocean current via the Garyuk draining sluices which makes it possible to run the ocean current power parks on a large scale. The total facility capacity of two ocean current power parks that consist of 240 ocean current turbine generators with 4m diameter of turbine blades is about 134MW, and the expected total annual power output is about 586GWh.

  • PDF

A Numerical Study on the Application of the Ocean Current Power Parks with a Tidal Power Plant (조력발전소와 연계한 해류발전단지의 활용에 대한 유동해석 연구)

  • Lee, Seung-Ho;Lee, Sang-Hyuk;Jang, Kyung-Soo;Lee, Jung-Eun;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.38-43
    • /
    • 2009
  • The Shiwhaho is an artificial lake located in Yellow sea of Korea where the ocean tidal current is significantly strong, and the tidal power plant is currently being under construction to generate electric power from the ocean tidal current. In addition to the tidal power plant under construction, an ocean current power park was proposed to maximize the power generation by utilizing the ocean current generated by the tidal power plant. To evaluate the feasibility of such combined power plant, the flow characteristics in the ocean current power parks connected with the tidal power plants were investigated numerically in the present study. When two different type of generations are operating together as a system, their interference may occur, which affects their efficiency. Therefore, the minimum distances between the tidal power plants and the ocean current power generators are studied in the present study to minimize such interference. The feasible region to generate power around the Shiwha tide embankment is also predicted by considering predicted ocean current speed distribution. Various arrangements of the ocean current generators are examined and an optimal arrangement is also discussed.

Integrated Power System Combining Tidal Power and Ocean Current Power (조력발전과 해류발전을 겸하는 통합발전시스템)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.270-273
    • /
    • 2008
  • The integrated power system combining a tidal power plant and two ocean current power parks is suggested. It is characterized by the set up of an ocean current power park in the lake side by installing a number of ocean current turbines generating electricity by using sea water flow discharged into the lake side from the turbine generator of a tidal power plant and an ocean current power park in the sea side by installing a number of ocean current turbines generating electricity by using sea water flow exiting into the sea side through the sluice gate from the lake side. The vision of the integrated power system is demonstrated by the simple theory and simulation results of the SIWHA Tidal Power Plant. And it is shown that the newly proposed integrated power system combining tidal power and ocean current power can produce very high economical benefits.

  • PDF

Current Measurement and Velocity Spatial Distribution of Deep Ocean Engineering Basin

  • Jung, Sung-Jun;Jung, Jae-Sang;Lee, Yong-Guk;Park, Byeong-Won;Hwang, Sung-Chul;Park, In-Bo;Kim, Jin-Ha;Park, Il-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.150-160
    • /
    • 2021
  • To ensure the international competitiveness of the domestic offshore plant industry, a consensus has been formed regarding the requirement for large offshore basins for performing offshore plant performance verification. Accordingly, the Korea Research Institute of Ships & Ocean Engineering has built the world's largest deep ocean engineering basin (DOEB). The purpose of this study is to evaluate the characteristics of velocity distribution under various conditions of the DOEB. An independent measuring jig is designed and manufactured to measure the current velocities of many locations within a short time. The measurement jig is a 15-m-high triangular-truss structure, and the measurement sensors can move 15 m vertically through an electric motor-wire device. The current speed is measured under various impeller revolutions per minute and locations of the DOEB using the jig. The spatial distribution characteristics of the current velocity in the DOEB and the performance of the current generator are analyzed. The maximum speed is 0.56 m/s in the center of the DOEB water surface, thereby confirming sufficient current velocity distribution uniformity for model testing.

Feasibility Study on the Integration Power System combining Tidal Power Generation and Ocean Current Power Generation (조력발전과 해류발전을 겸하는 통합발전시스템 타당성 연구)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.611-614
    • /
    • 2009
  • The present paper relates to an integration power system combining tidal power generation and ocean current power generation, and more particularly, to an integration power system combining a tidal power plant and two ocean current power parks, which is capable of increasing the operating rate of power facilities and efficiently generating electrical energy by using incoming seawater into the lake through turbine generators of a tidal power plant or fast flow of seawater discharged to a sea side through sluice gates of a tidal power dam. It is shown that the integration power system is a new promising ocean power system and the ocean current turbine generators in the ocean current power parks of the integration power system are smaller in size and larger in power generation capacity compared with the tidal current turbine generators in the ocean.

  • PDF

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

A Review of Ocean Circulation of the East/Japan Sea (한국 동해 해수순환의 개략적 고찰)

  • 김종규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.103-107
    • /
    • 2001
  • The major studies of an ocean circulation of the East/Japan Sea related to evaluate the feasibility and utilization of deep ocean water are reviewed. The major feature of surface current system of the East/Japan Sea is an inflow of the Tsushima Warm Current through the Korea/Tsushima Strait and the outflow through the Tsugaru and Soya Straits. The Tsushima Warm Current has been known to split into two or three branches in the southern region of the East/Japan Sea. In the cold water region of the East/Japan Sea, the North Korean Cold Current turns to the east near 39$^{\circ}$N after meeting the East Korean Warm Current, then flows eastward. The degree of penetration depends on the strength of the positive wind stress curl, according to the ventilation theory. Various current meter moorings indicate strong and oscillatory deep currents in various parts of the basin. According to some numerical experiments, these currents may be induced by pressure-topography or eddy-topography interaction. However, more investigations are needed to explain clearly the presence of these strong bottom currents. This study concludes the importance of topographical coupling, isopycnal outcropping, different wind forcing and the branching of the Tsushima Warm Current on the circulation of the East/Japan Sea.

  • PDF

The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM (고해상도 해양예보모형 HYCOM에 재현된 쓰시마난류)

  • Seo, Seongbong;Park, Young-Gyu;Park, Jae-Hun;Lee, Ho Jin;Hirose, N.
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.135-146
    • /
    • 2013
  • This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, $1/12^{\circ}$ Global HYbrid Coordiate Ocean Model (HYCOM). The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP) mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv) (1 Sv = $10^6m^3s^{-1}$), which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002). The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82). The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

Ocean Current Power Generation using sea water discharged from Turbine Generator and Gate Channel of Tidal Power Plant (조력발전소의 수차발전기 및 수문도수로 방출수를 이용한 해류발전)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.180-183
    • /
    • 2008
  • This paper is about the ocean current power generation using sea water incoming into the lake surrounded by barrages and sea water discharged from a dam made of artificial structures. In operation of a tidal power plant, the sea water discharged from a turbine structure and a gate structure of a tidal power plant is faster than the tidal current caused by tides in nature and has better characteristics than that to run ocean current turbines. It is shown that the sea water discharged after generating electricity through a turbine generator of a tidal power plant and the sea water discharged from a gate structure of a tidal dam still have kinetic energy high enough to run an ocean current turbine and produce valuable electricity.

  • PDF