• Title/Summary/Keyword: Ocean conditions

Search Result 2,621, Processing Time 0.027 seconds

Experimental Study of Wave Run-up on Semi-submersible Offshore Structures in Regular Waves (규칙파 중 반잠수식 해양구조물 주위의 런업에 관한 실험 연구)

  • Kim, Namwoo;Nam, Bo Woo;Cho, Yoonsang;Sung, Hong Gun;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • This paper presents the results of an experimental study of wave run-ups on a semi-submersible offshore structure. A series of model tests with a 1:80 scale ratio were carried out in the two-dimensional wave basin of MOERI/KIOST. The experimental model had two columns and one pontoon. The model was fixed and wave elevations were measured at five points per column. Two different draft (operational & survival) conditions and three wave heights were considered under regular wave conditions. First, the nonlinear characteristics of wave run-ups are discussed by using the time series data. Then, the wave heights are compared with numerical results based on the potential flow model. The comparison shows fairly good correlation between the experiments and computations. Finally, wave run-ups under the operational and survival conditions are suggested.

Numerical and Experimental Study on Motion Response of 1MW OTEC Platform (1MW OTEC 구조물의 운동 응답에 대한 수치 및 모형시험 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Kim, Namwoo;Jung, Dong-Ho;Hong, Sa Young;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • The 1MW OTEC (Ocean Thermal Energy Conversion) platform was designed for application in equatorial seas. In this study, the OTEC platform was investigated using numerical and experimental methods. An octagon-shaped OTEC platform was investigated using the Ocean Engineering Basin of KRISO. These experiments included various tests of regular waves, irregular waves and irregular waves with current (wave+current). The responses of the platform in regular waves showed good agreement between the numerical and experimental results, including the motion RAO, wave run up, and mean drift force. The peak period of heave and pitch motions were observed around 0.5 rad/s, and the effect of the total reflection was found under short wave conditions. The standard deviation (STD) of the platform motion was checked in irregular waves of equatorial and Hawaiian seas. The STD of the pitch was less than $4^{\circ}$ different from the operability requirement under equatorial conditions and the surge STD of the wave frequency showed good agreement between the numerical and experimental results. The STD values of the surge and pitch were increased 66.6% and 92.8% by the current effects in irregular waves, but the pitch STD was less than $4^{\circ}$ under equatorial conditions. This study showed that the STD of the surge was affected by spring effects. Thus, the watch circle of the platform and tension of the mooring lines must be evaluated for a specific design in the future.

Computational Investigation of Seakeeping Performance of a Surfaced Submarine in Regular Waves

  • Jung, Doojin;Kim, Sanghyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.303-312
    • /
    • 2022
  • A submarine is optimized to operate below the water surface because it spends most of its time in a submerged condition. However, the performance in free surface conditions is also important because it is unavoidable for port departure and arrival. Generally, potential flow theory is used for seakeeping analysis of a surface ship and is known for excellent numerical accuracy. In the case of a submarine, the accuracy of potential theory is high underwater but is low in free surface conditions because of the nonlinearity near the free surface area. In this study, the seakeeping performance of a Canadian Victoria Class submarine in regular waves was investigated to improve the numerical accuracy in free surface conditions by using computational fluid dynamics (CFD). The results were compared to those of model tests. In addition, the potential theory software Hydrostar developed by Bureau Veritas was also used for seakeeping performance to compare with CFD results. From the calculation results, it was found that the seakeeping analysis by using CFD gives good results compared with those of potential theory. In conclusion, seakeeping analysis based on CFD can be a good solution for estimating the seakeeping performance of submarines in free surface conditions.

Vibration-Based Damage Monitoring in Model Plate-Girder Bridges under Uncertain Temperature Conditions (불확실한 온도 조건하의 모형 강 판형교의 진동기반 손상 모니터링)

  • Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • A vibration-based damage-monitoring scheme is proposed that would generate an alarm showing the occurrence and location of damage under temperature-induced uncertainty conditions. Experiments on a model plate-girder bridge are described, for which a set of modal parameters was measured under uncertain temperature conditions. A damage-alarming model is formulated to statistically identify the occurrence of damage by recognizing the patterns of damage-driven changes in the natural frequencies of the test structure and by distinguishing temperature-induced off-limits. A damage index method based on the concept of modal strain energy is implemented in the test structure to predict the location of damage. In order to adjust for the temperature-induced changes in the natural frequencies that are used for damage detection, a set of empirical frequency correction formulas is analyzed from the relationship between the temperature and frequency ratio.

Dynamic Response Analysis of Caisson Structure by Acceleration Measurement (가속도 계측을 통한 항만시설용 케이슨 구조체의 동적응답 분석)

  • Lee, So-Young;Kim, Jeong-Tae;Kim, Heon-Tae;Park, Woo-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.114-121
    • /
    • 2009
  • In this study, acceleration responses of caisson structures under various environmental conditions are experimentally examined as a basic study to develop the health assessment technique for harbor structures. To achieve the objective, three approaches are implemented. Firstly, a target caisson structure is selected and its small-scaled caisson is constructed in the laboratory. Secondly, a finite element model of the caisson is generated to identify dynamic responses of the baseline structure. Thirdly, experimental tests are performed on the caisson model to examine dynamic responses under various boundary conditions and impact locations. Four different boundary conditions, 'standing on concrete floor', 'standing on styrofoam block', 'standing on sand-mat' and 'hanging by crane', are considered and correlation coefficients of frequency response functions between four states are analyzed.

Study on an USBL Positioning Algorithm in a Shallow Water Tank in Noisy Conditions (배경잡음이 존재하는 얕은 수조 내에서의 USBL 위치추적 알고리즘 적용 가능성 연구)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • It is well known fact that acoustic positioning systems are absolutely needed for various underwater operations. According to the distances between their sensors they are classified into three parts: long baseline(LBL), short baseline(SBL), and ultra-short baseline(USBL). Among them the USBL system is widely used because of its simplicity, although it is the most inaccurate. Recently, in order to increase the positioning accuracy, various USBL systems using broadband signal such as MFSK(Multiple Frequency Shift Keying) are produced. However, their positioning accuracy is still limited by background noise and reflected waves. Therefore, there is difficulty in applying the USBL system using MFSK signal in a shallow water with noisy conditions. In order to examine the effect of the noise and wave reflections this paper analyze position errors for various conditions using numerical simulations. The simulation results say that tile SNR must be greater than 20dB and errors in the vertical direction are slightly increased by wave reflections by upper and lower boundaries.

  • PDF

Mooring Layout Angle and Maximum Tension for Spread Moored FPSOs in Various Metocean Conditions (다점계류식 FPSO의 해양환경별 계류선 각도와 최대 장력에 대한 연구)

  • Park, Sung-Boo;Lee, Seung-Jae;Chung, Yun-Suk;Lee, Min-Kyeong;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.253-259
    • /
    • 2016
  • This study demonstrates the result of mooring analysis for five spread-moored FPSOs having different length-to-breadth (L/B) ratios from 4.5–6.5. FPSOs are subjected to four metocean conditions, ones from the Gulf of Mexico (Hurricane/Loop current condition), West Africa, Nigeria, and Brazil Campos Basin, which are amongst the most typical offshore oil and gas fields. With change in design parameters of OBA (Outer bundle angle) and IBA (Inner bundle angle) combinations, a change in the line tension is demonstrated and the OBA-IBA combinations having the smallest line tension are presented for each L/B ratio and sea, respectively. This study is expected to influence the preliminary design layout of an FPSO spread-mooring system as a function of the L/B ratio and metocean conditions.

MEASUREMENT OF SPECTRAL-ANGULAR RADIANCES OF COASTAL WATERS IN THE KOREAN SOUTH SEA

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.156-158
    • /
    • 2007
  • The radiance observed from the ocean depends on the illumination and viewing geometry along with the water properties, and this variation is called the bidirectional effect which is important to be considered in ocean color remote sensing. In the present study, as a preliminary step, the spectral-angular radiances in coastal water were investigated with experiments for a range of viewing geometric conditions $(0-70^{\circ})$. Over a phytoplankton-dominated water surface the upward radiance for visible and near-infrared wavelengths (example, SeaWiFS and GOCI) increased at nadir and decreased toward the near-horizon, becoming dependent of viewing angles (with higher radiance at nadir view angle and lower radiance at near-horizon viewing angle). This variations were better expressed by the Q-factor, which relates upwelling radiance to the upwelling irradiance (i.e., $Q=E_u/L_u$, also dependent on Sun's position). The Q-factor for this case was more non-uniform with the considered wavelengths and was dependent on viewing geometric conditions. These experimental results confirm the previous similar findings in other coastal waters.

  • PDF

Simulation of greenhouse gas emissions of small ships considering operating conditions for environmental performance evaluation

  • Jeong, Sookhyun;Woo, Jong Hun;Oh, Daekyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.636-643
    • /
    • 2020
  • This study developed a method for simulating greenhouse gas (GHG) emissions considering changes in conditions that may occur during the actual operation of small ships. Additionally, we analyzed and compared the results of the proposed method with that of existing emission simulations according to life-cycle assessment (LCA), thus verifying the proposed method's effectiveness. Through the results of the study, we confirmed that the proposed method improves the simulation by considering emissions due to ship operation, whereas existing methods focus on emissions caused by raw material production. Additionally, the proposed method could identify and quantify the relationship between changes in operating conditions and GHG emissions. We expect this GHG emissions simulation technique to help improve the environmental performance of ships in the future.

Design and Analysis of a Mooring System for an Offshore Platform in the Concept Design Phase (해양플랜트 개념설계 단계에서의 계류계 초기 설계 및 해석)

  • Sungjun Jung;Byeongwon Park;Jaehwan Jung;Seunghoon Oh;Jongchun Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.248-253
    • /
    • 2023
  • Most offshore platforms utilize chain mooring systems for position keeping. However, information regarding related design modification processes is scarce in literature. This study focuses on the floating liquefied natural gas (LNG) bunkering terminal (FLBT) as the target of shore platform and analyzes the corresponding initial mooring design and model tests via numerical simulations. Subsequently, based on the modified design conditions, a new mooring system design is proposed. Adjusting the main direction of the mooring line bundle according to the dominant environmental direction is found to significantly reduce the mooring design load. Even turret-moored offshore platforms are exposed to beam sea conditions, leading to high mooring tension due to motions in beam sea conditions. Collinear environmental conditions cannot be considered as design conditions. Mooring design loads occur under complex conditions of wind, waves, and currents in different environmental directions. Therefore, it is essential appropriately assign the roll damping coefficients during mooring analysis because the roll has a significant effect on mooring tension.