• Title/Summary/Keyword: Ocean and Meteorological Satellite(COMS)

Search Result 212, Processing Time 0.028 seconds

Verification of Land Surface Temperature using COMS(Communication, Ocean and Meteorological Satellite) (천리안 위성을 이용한 지표면 온도의 검증)

  • Baek, Jong-Jin;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.99-102
    • /
    • 2012
  • 지표면 온도는 토지피복의 상태, 식생의 분포 상태, 토양수분, 증발산 등의 영향으로 많은 차이를 가지게 되며, 지면-대기의 상호순환의 중요한 인자로써 기후모델 및 농업 등의 기본적인 데이터로 사용되고 있다. 이러한 지표면의 온도를 정확하게 파악하는 것은 수문학적 관점 및 기상적인 관점에서 매우 중요하다. 기존에 LST (Land Surface Temperature, 지표면온도), ET (EvapoTranspiration, 증발산), NDVI (Normalized Difference Vegetation Index, 정규식생지수) 등의 검증이 많이 이루어진 MODIS위성의 Terra/Aqua센서는 한반도를 스캔하고 지나갈 때의 순간적인 데이터를 산출된다. 공간적인 면에서는 많은 이점이 있으나 시간적인 면에서는 시간에 따른 인자들의 변동성을 파악 하는데는 많은 문제가 있다. 그렇기 때문에 시 공간적으로 변화양상을 측정 할 수 있는 정지궤도위성의 중요성이 대두되고 있다. 본 연구에서는 국내에서 2010년 6월 27일 발사된 정지궤도위성인 천리안의 데이터를 활용하였다. 천리안 위성은 기상 센서와 해양관측 센서 그리고 통신센서를 가진 위성이다. 천리안 위성의 기상 센서는 MTSAT-1 위성과 같은 적외선 센서를 탑재하고 있으며, 평시에는 15분 단위의 데이터를 산출하게 된다. 천리안에서 제공되는 많은 Product(강우강도, 해수면온도, 가강수량, 지구방출복사 등)는 수자원 및 기상에 관련된 데이터가 제공된다. 하지만 아직 검증이 많이 이루어지지 못하였다. 그래서 천리안 위성 데이터인 지표면 온도자료를 이용하여 천리안 위성의 효율성에 대해서 알아보고자 하며, 기존의 검증이 많이 이루어진 MODIS의 데이터와의 상관성을 분석하고 지상과의 관계를 검증 및 비교하여 천리안 위성의 활용성에 대해서 알아보려고 한다.

  • PDF

STATUS OF GOCI DATA PROCESSING SYSTEM(GDPS) DEVELOPMENT

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.159-161
    • /
    • 2007
  • Geostationary Ocean Color Imager (GOCI), the world-first ocean remote sensing instrument on geostationary Communication, Ocean, Meteorological Satellite (COMS), will be able to take a picture of a large region several times a day (almost with every one hour interval). We, KORDI, are in charge for developing the GOCI data processing system (GDPS) which is the basic software for processing the data from GOCI. The GDPS will be based on windows operating system to produce the GOCI level 2 data products (useful for oceanographic environmental analysis) automatically in real-time mode. Also, the GDPS will be a user-interactive program by well-organized graphical user interfaces for data processing and visualization. Its products will be the chlorophyll concentration, amount of total suspended sediments (TSS), colored dissolved organic matters (CDOM) and red tide from water leaving radiance or remote sensing reflectance. In addition, the GDPS will be able to produce daily products such as water current vector, primary productivity, water quality categorization, vegetation index, using individual observation data composed from several subscenes provided by GOCI for each slit within the target area. The resulting GOCI level 2 data will be disseminated through LRIT using satellite dissemination system and through online request and download systems. This software is carefully designed and implemented, and will be tested by sub-contractual company until the end of this year. It will need to be updated in effect with respect to new/improved algorithms and the calibration/validation activities.

  • PDF

Downscaling of Land Surface Temperature by Combining Communication, Ocean and Meteorological Satellite (천리안 위성의 기상센서와 해양센서를 활용한 지표면 온도 상세화 기법)

  • Jeong, Jaehwan;Baik, Jongjin;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 2017
  • Remotely sensed satellite data is easier to collect and better to represent local phenomenon than a site data. So they can contribute to the activation and development of many research. However, it is necessary to improve spatial resolution suitable for application in the area of complex topography such as the Korean Peninsula. In this study, finer resolution Land Surface Temperature (LST) was downscaled from 4 km to 500 m by combining GOCI with MI data of Communication, Ocean and Meteorological Satellite (COMS). It was then statistically analyzed with LST data observed from the ASOS sites to validate its applicability. As a result, it was found that the errors decreased and correlation increased at the most validation sites, also the spatial distribution analysis showed a similar tendency but it expressed the complicated terrain better. This study suggests possibility of expanding the application range of COMS by producing finer resolution data available in various studies.

Development of Rainfall Estimation Technology in the Korean Peninsula in the Event of Heavy Rain using COMS and GPM Satellites (천리안 위성과 GPM 위성을 활용한 한반도 호우사상 강우추정 기술 개발)

  • Cheon, Eun Ji;Lee, Dalgeun;Yu, Jung Hum
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.851-859
    • /
    • 2019
  • The COMS satellites take image of the Korean Peninsula every 15 minutes, but due to the limitations of the observational channels, they tend to underestimate when estimating rainfall. In this study, we developed satellite-based rainfall estimation technology using COMS and GPM that can be used in the heavy rain on the Korean Peninsula. The time resolution and spatial resolution of COMS satellites and GPM satellites were matched to improve accuracy using GPM IMERG data. As a result, it showed that the number of correlations with the ASOS observations was more than 0.7, enabling the estimation of rainfalls that are more accurate than the estimates of rainfall by COMS satellites. It is believed that the application of the subsequent satellite(GK-2A) will provide more accurate rainfall estimation information in the future. Therefore, we expect greater utilization in disaster management for the ungauged areas.

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

DESIGN OF AN IMAGE MOTION COMPENSATION (IMC) ALGORITHM FOR IMAGE REGISTRATION OF THE COMMUNICATION, OCEAN, METEOROLOGICAL SATELLITE (COMS)-1 (통신해양기상위성 1호기의 영상위치유지를 위한 영상오차보상(IMC) 알고리즘 설계)

  • Jung Taek-Seo;Park Sang-Young;Lee Un-Seob;Ju Gwang-Hyeok;Yang Koon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • This paper presents an Image Motion Compensation (IMC) algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS)-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR) system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

A Progress Status of Remote Sensing in the Korean Meteorological Society (한국기상학회 원격탐사 분야 학술 발전 현황)

  • Myoung-Hwan Ahn;Jhoon Kim;GyuWon Lee;Sang-Woo Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.197-222
    • /
    • 2023
  • Remote sensing becomes a new and core framework for the atmospheric sciences and closely related areas concerning with the ever-changing global environmental status. However, remote sensing in the Korea Meteorological Society is relatively new, where the first relevant paper is appeared in 1983, as well as is an area with relatively limited number of research groups. Here, we review and summarize some of the key progress in this area within Korea Meteorological Society focusing on the areas of satellite, radar, and ground based remote sensing such as lidar, spectrometer and sun photometer. Overall, the area is shown to have the most significant progress occur along with the acquisition of the key infra structures such as the COMS (Communication, Ocean and Meteorological Satellite) and S-band radar system led by Korea Meteorological Administration in early 2000. After that, the area has quickly developed into a status playing important roles to lead and support the overall activities in the atmospheric measurements. It is expected that the importance and role of the remote sensing will increase in the coming years.

Space Qualification of MMICs for COMS Communications Transponder (통신해양기상위성 통신 중계기용 MMIC의 우주인증)

  • Jang, Dong-Pil;Yeom, In-Bok;O, Seung-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.56-62
    • /
    • 2006
  • This paper describes the MMIC product qualification of the Ka band satellite transponder for the COMS(Communication, Ocean and Meteorological Satellite). Ka-band active equipment for the COMS communications transponder are being developed by using 12 kinds of MMICs which include low noise amplifiers, medium power amplifiers, frequency mixers, frequency multipliers, RF switch, and HEMT attenuator MMIC, Those MMICs had been fabricated at the MMIC production foundry of northrop Grumman Space Technology (Velocium) which is qualified for space application, and experienced in various space programs during past decades. For the MMIC product qualification, Visual inspection and SEM inspection had been performed, and burn-in test for 240 hours and accelerated life-test for 1000 hours had been done on test fixtures of individual MMIC products at $125^{\circ}C$. Additionally, infrared temperature scanning and finite element simulation were performed to analyze and confirm the channel temperature of semiconductor devices on several representatives of those MMIC products that os one of the most important factors in performance degradation and life reduction.

  • PDF

Radiometric Calibration Method of the GOCI (Geostationary Ocean Color Imager)

  • Kang, Gumsil;Myung, Hwan-Chun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.60-63
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of oceancolor around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this paper radiometric calibration concept of the GOCI is introduced. The GOCI radiometric response is modeled as a nonlinear system in order to reflect a nonlinear characteristic of detector. In this paper estimation approaches for radiometric parameters of GOCI model are discussed. For the GOCI, the offset signal depends on each spectral channel because dark current offset signal is a function of integration time which is different from channel to channel. The offset parameter can be estimated by using offset signal measurements for two integration time setting is described.

  • PDF

Analysis of COMS In-Orbit Test for Moment of Inertia Measurement (천리안위성 관성모멘트의 궤도상 측정 시험 분석)

  • Park, Keun-Joo;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • In the attitude and orbit control subsystem design, the moment of inertia of the satellite is the major contributor to be considered. Satellites equipped with large solar arrays need to measure the moment of inertia accurately to avoid the interference of the thruster actuation period with its flexible mode. In this paper, the in-orbit tests of COMS to measure the moment of inertia are described. Then, the differences between the measured through in-orbit test and the predicted are compared. Finally, it is verified that the differences are below uncertainty bounds considered in the critical design of COMS attitude and orbit control subsystem.