• Title/Summary/Keyword: Ocean Remote Sensing

Search Result 776, Processing Time 0.028 seconds

REMOTE SENSING OF THE CHINA SEAS AT ORSI/OUC

  • HE, Ming-Xia;Zeng, Kan;Chen, Haihua;Zhang, Tinglu;Hu, Lianbo;Liu, Zhishen;Wu, Songhua;Zhao, Chaofang;Guan, Lei;Hu, Chuanmin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.11-14
    • /
    • 2006
  • We present an overview on the observation and research for the China seas using both field experiments and multi-sensor satellite data at ORSI/OUC, covering two topics: (1) Spatial and temporal distribution of internal waves in the China Seas and retrieval of internal wave parameters; (2) Retrieval, validation, and cross-comparison of multi-sensor ocean color data as well as ocean optics in situ experiments in the East China Sea. We also present an incoherent Doppler wind lidar, developed by ORSI, and its observation for marine-atmospheric boundary layer.

  • PDF

USING SATELLITE SYNTHETIC APERTURE RADAR IMAGERY TO MAP OIL SPILLS IN THE EAST CHINA SEA

  • Shi, Lijian;Ivanov, Andrei Yu.;He, Mingxia;Zhao, Chaofang
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.981-984
    • /
    • 2006
  • Oil pollution of the ocean is a major environmental problem, especially in its coastal zones. Synthetic aperture radar (SAR) flown on satellites, such as ERS-2 and Envisat, has been proved to be a useful tool in oil spill monitoring due to its wide coverage, day and night, and all-weather capability. The total 120 SAR images containing oil spill over the East China Sea were collected and analyzed, ranging in date from July 23, 2002 to November 11, 2005. After preprocessed, SAR images were segmented by adaptive threshold method. The oil spill images were incorporated into GIS after distinguished from look-like phenomena, finally we presented the oil spills distribution map for the East China Sea. The wide-swath and quick-looks SAR imagery for mapping of oil spill distribution over large marine areas were proved to be useful when full resolution data are not available. After the temporal and spatial distribution of the oil spills were analyzed, we found that most of oil spills were distributed along the main ship routes, which means the illegal discharge by ships, and the occurrence of oil spill detected on SAR images acquired during morning and summer is much higher than during evening and winter.

  • PDF

THE PAN OCEAN REMOTE SENSING CONFERENCE ASSOCIATION --- OUR GREETING TO THE FULL CONFERENCE ISRS2006PORSEC

  • Katsaros, Kristina B.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.3-6
    • /
    • 2006
  • This presentation delivers the Appreciation of the The Pan Ocean Remote Sensing Conference Association for the cooperation with the Korean Society of Remote Sensing in organizing a joint conference with the International Symposium of Remote Sensing. It includes a brief history of the PORSEC Association with its mission and aims and the system of governance of the organization. Our vision for the future, is presented from this president's point of view. It includes a discussion of building expert capacity to use remote sensing techniques in developing nations by the sharing of knowledge and our ability to promote predictability of natural hazards with our workshops and science sessions. The article ends with an appreciation of our many sponsors.

  • PDF

Detection of low Salinity Water in the Northern East China Sea During Summer using Ocean Color Remote Sensing

  • Suh, Young-Sang;Jang, Lee-Hyun;Lee, Na-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.153-162
    • /
    • 2004
  • In the summer of 1998-2001, a huge flood occurred in the Yangtze River in the eastern China. Low salinity water less than 28 psu from the river was detected around the southwestern part of the Jeju Island, which is located in the southern part of the Korean Peninsula. We studied how to detect low salinity water from the Yangtze River, that cause a terrible damage to the Korean fisheries. We established a relationships between low salinity at surface, turbid water from the Yangtze River and digital ocean color remotely sensed data of SeaWiFS sensor in the northern East China Sea, in the summer of 1998, 1999, 2000 and 2001. The salinity charts of the northern East China Sea were created by regeneration of the satellite ocean color data using the empirical formula from the relationships between in situ low salinity, in situ measured turbid water with transparency and SeaWiFS ocean color data (normalized water leaving radiance of 490 nm/555 nm).

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF

CO2 EXCHANGE COEFFICIENT IN THE WORLD OCEAN USING SATELLITE DATA

  • Osawa, Takahiro;Masatoshi, Akiyama;Suwa, Jun;Sugimori, Yasuhiro;Chen, Ru
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.49-57
    • /
    • 1998
  • CO2 transfer velocity is one of the key parameters for CO2 flux estimation at air - sea interface. However, current studies show that significant inconsistency still exists in its estimation when using different models and remotely sensed data sets, which acts as one of the main uncertainties involved in the computation of CO2 exchange coefficient between air - sea interface. In this study, wind data collected from SSM/I and scatterometer onboard ERS-1, in conjunction with operational NOAA/AVHRR, are applied to different models for calculating CO2 exchange coefficient in the world ocean. Their interrelationship and discrepancies inherent with different models and satellite data are analyzed. Finally, the seasonal and inter-annual variation of CO2 exchanges coefficient for different ocean basins are presented and discussed.

  • PDF

Application of the Landsat TM/ETM+, KOMPSAT EOC, and IKONOS to Study the Sedimentary Environments in the Tidal Flats of Kanghwa and Hwang-Do, Korea

  • Ryu Joo-Hyung;Lee Yoon-Kyung;Yoo Hong-Rhyong;Park Chan-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.140-143
    • /
    • 2004
  • The west coast of the Korean Peninsula is famous for its large tidal range (up to 9 m) and vast tidal flats. With comparison the sedimentary environments of open and close tidal flat using remote sensing, we select Kanghwa tidal flat and Hwang-Do tidal flat in Cheonsu Bay. Prior to surface sediment discrimination using remote sensing, sedimentary environments including intertidal OEM, hydraulic condition, and relationship between grain size and various tidal condition are investigated. Remote sensing has the potential to provide synoptic information of intertidal environments. The objectives of this study are: (i) to generate an intertidal digital elevation model (OEM) using the waterline method of Lansat TM/ETM+, (ii) to investigate the tidal channel distribution using texture analysis, and (iii) to analyze the relationship between surface grain size by using in-situ data and intertidal OEM and tidal channel density by using high-resolution satellite data such as IKONOS and Kompsat EOC. The results demonstrate that satellite remote sensing is an efficient and effective tool for a surface sediment discrimination and long term morphologic change estimation in tidal flats.

  • PDF

APPLICATION OF OCEAN COLOR REMOTE SENSING IN MARINE STUDY OF VIETNAM ? STATUS AND POTENTIAL

  • Long, Bui Hong;Son, Tong Phuoc Hoang;Khin, Lau Va
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.170-173
    • /
    • 2006
  • The remote sensing is powerful oceanographic tools not only for Integrated Coastal Zone Management (ICZM) but also for various areas of oceanography. Thank to effort of Government and local authorities as well as active support of international institutions, many projects on the applied oceanography had and have been caring out in coastal and offshore waters of Vietnam sea. One of the modern methods which has been used in these project is ocean color remote sensing technique. This paper will present some preliminary results obtain from application of these techniques in study of coastal and offshore environment of Vietnam sea.

  • PDF