• Title/Summary/Keyword: Ocean Color Satellite

Search Result 228, Processing Time 0.024 seconds

The Analysis of GOCI CDOM for Observation of Ocean Environment Change (해양환경변화관측을 위한 GOCI CDOM 자료 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.389-395
    • /
    • 2013
  • Geostationary Ocean Color Imager(GOCI), the World's first spaceborne ocean color observation satellite operated in geostationary orbit, was successfully launched on May 2010. The main missions of GOCI is the coastal environment monitoring of GOCI in order to meet the necessity of long-term climate change monitoring and research. The GOCI have higher spatial resolution than MODIS, $500m{\times}500m$, and 8 spectral ocean color channels. GOCI have a capability for observation on the coastal environment change, GOCI perform the observation with 8 times a day. In this paper, we presented the more improved results for observation on the coastal environment change than MODIS ocean color sensor and detected the spatial difference of CDOM for monitoring coastal environment change.

Ocean Disaster Detection System(OD2S) using Geostationary Ocean Color Imager(GOCI) (천리안해양관측위성을 활용한 해양 재난 검출 시스템)

  • Yang, Hyun;Ryu, Jeung-Mi;Han, Hee-Jeong;Ryu, Joo-Hyung;Park, Young-Je
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.177-189
    • /
    • 2012
  • We developed the ocean disaster detection system(OD2S) which copes with the occurrences of ocean disasters (e. g. the red and green tide, the oil spill, the typhoon, and the sea ice) by converging and integrating the ocean color remote sensing using the satellite and the information technology exploiting the mass data processing and the pattern recognitions. This system which is based on the cosine similarity detects the ocean disasters in real time. The existing ocean color sensors which are operated in the polar orbit platforms cannot conduct the real time observation of ocean environments because they support the low temporal resolutions of one observation a day. However, geostationary ocean color imager(GOCI), the first geostationary ocean color sensor in the world, produces the ocean color images(e. g. the chlorophyll, the colored dissolved organic matter(CDOM), and the total suspended solid(TSS)), with high temporal resolutions of hourly intervals up to eight observations a day. The evaluation demonstrated that the OD2S can detect the excessive concentration of chlorophyll, CDOM, and TSS. Based on these results, it is expected that OD2S detects the ocean disasters in real time.

Improvement of GOCI-II Ground System for Monitoring of Level-1 Data Quality (천리안 해양위성 2호 Level-1 영상의 품질관리를 위한 지상국 시스템 개선)

  • Sun-Ju Lee;Kum-Hui Oh;Gm-Sil Kang;Woo-Chang Choi;Jong-Kuk Choi;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1529-1539
    • /
    • 2023
  • The data from Geostationary Ocean Color Imager-II (GOCI-II), which observes the color of the sea to monitor marine environments, undergoes various correction processes in the ground station system, producing data from Raw to Level-2 (L2). Quality issues arising at each processing stage accumulate step by step, leading to an amplification of errors in the satellite data. To address this, improvements were made to the GOCI-II ground station system to measure potential optical quality and geolocation accuracy errors in the Level-1A/B (L1A/B) data. A newly established Radiometric and Geometric Performance Assessment Module (RGPAM) now measures five optical quality factors and four geolocation accuracy factors in near real-time. Testing with GOCI-II data has shown that RGPAM's functions, including data processing, display and download of measurement results, work well. The performance metrics obtained through RGPAM are expected to serve as foundational data for real-time radiometric correction model enhancements, assessment of L1 data quality consistency, and the development of reprocessing strategies to address identified issues related to the GOCI-II detector's sensitivity degradation.

Influence of atmospheric aerosol on satellite ocean color data in the East/Japan Sea (동해에서 대기에어로졸이 해색위성자료에 미치는 영향)

  • Yamada, Keiko;Kim, Sang-Woo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.53-54
    • /
    • 2009
  • The influence of atmospheric aerosol on satellite ocean color data were evaluated using SeaWiFS monthly standard mapped image products. The atmospheric optical thickness (AOT) was increased in spring and summer, and it showed the strong positive correlation with remote sensing reflectance, normalized waterleaving radiance /solar irradiance, at 555 nm (Rrs555) which is a component of the satellite chlorophyll estimation. Such the high AOT and high Rrs555 pixels showed overestimation of satellite chlorophyll in spring, especially in the area which showed large phytoplankton absorption which 1s expressed by low remote sensing reflectance at 443, 490 and 510 nm (Rrs 443, Rrs490 and Rrs510).

  • PDF

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

MEASUREMENT OF SPECTRAL-ANGULAR RADIANCES OF COASTAL WATERS IN THE KOREAN SOUTH SEA

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.156-158
    • /
    • 2007
  • The radiance observed from the ocean depends on the illumination and viewing geometry along with the water properties, and this variation is called the bidirectional effect which is important to be considered in ocean color remote sensing. In the present study, as a preliminary step, the spectral-angular radiances in coastal water were investigated with experiments for a range of viewing geometric conditions $(0-70^{\circ})$. Over a phytoplankton-dominated water surface the upward radiance for visible and near-infrared wavelengths (example, SeaWiFS and GOCI) increased at nadir and decreased toward the near-horizon, becoming dependent of viewing angles (with higher radiance at nadir view angle and lower radiance at near-horizon viewing angle). This variations were better expressed by the Q-factor, which relates upwelling radiance to the upwelling irradiance (i.e., $Q=E_u/L_u$, also dependent on Sun's position). The Q-factor for this case was more non-uniform with the considered wavelengths and was dependent on viewing geometric conditions. These experimental results confirm the previous similar findings in other coastal waters.

  • PDF

Analysis of Non-linearity Characteristic of GOCI (COMS 해양탑재체의 비선형성 특성 분석)

  • Kang, Geum-Sil;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this study, the radiometric model of GOCI, which is constructed based on the functional model of sub-system, is introduced. Non-linearity for each channel is analyzed in terms of linear gain and nonlinear gain by using the radiometric model. The non-linearity characteristic is validated by using test data which have been achieved during ground test at payload level. The non-linearity $G^3$/b shows identical characteristic for all channels.

  • PDF

Spatial distribution of pigment concentration around the East Korean Warm Current region derived from Satellite data

  • Kim, Sang-Woo;Kim, Young-Seup;Yoon, Hong-Joo;Saitoh, Sei-ich
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.655-655
    • /
    • 2002
  • Spatial distribution of phytoplankton pigment concentration (PPC) and sea surface temperature (SST) around the East Korean Warm Current (EKWC) was described, using both ocean color images and advanced very high resolution radiometer (AVHRR) images. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw(normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC area appeared in the ocean color and SST images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters along western thermal front of the warm streamer of the EKWC.

  • PDF

Cross-Calibration of GOCI-II in Near-Infrared Band with GOCI (GOCI를 이용한 GOCI-II 근적외 밴드 교차보정)

  • Eunkyung Lee;Sujung Bae;Jae-Hyun Ahn;Kyeong-Sang Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1553-1563
    • /
    • 2023
  • The Geostationary Ocean Color Imager-II (GOCI-II) is a satellite designed for ocean color observation, covering the Northeast Asian region and the entire disk of the Earth. It commenced operations in 2020, succeeding its predecessor, GOCI, which had been active for the previous decade. In this study, we aimed to enhance the atmospheric correction algorithm, a critical step in producing satellite-based ocean color data, by performing cross-calibration on the GOCI-II near-infrared (NIR) band using the GOCI NIR band. To achieve this, we conducted a cross-calibration study on the top-of-atmosphere (TOA) radiance of the NIR band and derived a vicarious calibration gain for two NIR bands (745 and 865 nm). As a result of applying this gain, the offset of two sensors decreased and the ratio approached 1. It shows that consistency of two sensors was improved. Also, the Rayleigh-corrected reflectance at 745 nm and 865 nm increased by 5.62% and 9.52%, respectively. This alteration had implications for the ratio of Rayleigh-corrected reflectance at these wavelengths, potentially impacting the atmospheric correction results across all spectral bands, particularly during the aerosol reflectance correction process within the atmospheric correction algorithm. Due to the limited overlapping operational period of GOCI and GOCI-II satellites, we only used data from March 2021. Nevertheless, we anticipate further enhancements through ongoing cross-calibration research with other satellites in the future. Additionally, it is essential to apply the vicarious calibration gain derived for the NIR band in this study to perform vicarious calibration for the visible channels and assess its impact on the accuracy of the ocean color products.