• Title/Summary/Keyword: Occupational carcinogen

Search Result 68, Processing Time 0.02 seconds

Development of Korean CARcinogen EXposure: Assessment of the Exposure Intensity of Carcinogens by Industry

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • v.13 no.3
    • /
    • pp.308-314
    • /
    • 2022
  • Background: Occupational cancer is a global health issue. The Korean CARcinogen EXposure (K-CAREX), a database of CARcinogen EXposure, was developed for the Korean labor force to estimate the number of workers exposed to carcinogens by industry. The present study aimed to estimate the intensity of exposure to carcinogens by industry, in order to supply complementary information about CARcinogen EXposure intensity to the K-CAREX. Methods: We used nationwide workplace monitoring data from 2014 to 2016 and selected target carcinogens based on the K-CAREX list. We computed the 95th percentile levels of measurements for each industry by carcinogens. Based on the 95th percentile level relative to the occupational exposure limit, we classified the CARcinogen EXposure intensity into five exposure ratings (1-5) for each industry. Results: The exposure ratings were estimated for 21 carcinogenic agents in each of the 228 minor industry groups. For example, 3,058 samples were measured for benzene in the manufacturing industry of basic chemicals. This industry was assigned a benzene exposure rating of 3. Conclusions: We evaluated the CARcinogen EXposure ratings across industries in Korean workers. The results will provide information on the exposure intensity to carcinogens for integration into the K-CAREX. Furthermore, it will aid in prioritizing control efforts and identifying industries of concern.

Characteristics of Occupational Carcinogens Exceeding Occupational Exposure Limit in Korea, 1999 to 2009 (우리나라 노출기준 초과 발암성물질의 특성)

  • Phee, Young-Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.227-235
    • /
    • 2011
  • The objective of this study was to analyze 157 processes of 145 industries that exceeded Korean Occupational Exposure Limits (KOEL) for carcinogen during the 11 year period from 1999 to 2009. The data included number of industry and workers exposed, type of carcinogen and their exceeded ratio, type and size of industry in each year. These data were collected by 46 regional employment & labor offices in Korea using work environment monitoring reports. The result showed that, in each year, about 10 industries exceed their carcinogen exposure limit. The most common carcinogen exceeding KOEL were found to be formaldehyde, benzene, ethylene oxide and chromium VI. The carcinogen with the highest level of over-exposure were in the order of formaldehyde, benzene, ethylene oxide and asbestos. Fabricated metal product manufacturing industry were found to be most vulnerable against carcinogen with 11.1% of them exceeding carcinogen KOEL followed by electronic components manufacturing industry (8.3%), chemical products manufacturing industry (6.3%), and electrical equipments manufacturing industry (4.9%). The industry employing less than 50 workers had the highest percentage of exceeding carcinogen KOEL with 52.8%. The result also showed that strengthening KOEL for benzene and asbestos helped reduce the level of carcinogen over-exposure. Based on these results, strengthening the KOEL or new regulation turned out to help reduce the carcinogen over-exposure level. Benzene, ethylene oxide and chromium VI were the most frequently over-exposed carcinogen with the highest level. Therefore, these chemicals need to be regulated with a highest priority to improve the workplace environment. The results also show that the small-sized industries employing less than 50 workers was the most vulnerable against carcinogen exposures. Therefore, more government support are needed for these small-sized industries to help them to improve their workplace environment.

Priority Setting for Occupational Cancer Prevention

  • Peters, Cheryl E.;Palmer, Alison L.;Telfer, Joanne;Ge, Calvin B.;Hall, Amy L.;Davies, Hugh W.;Pahwa, Manisha;Demers, Paul A.
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • Background: Selecting priority occupational carcinogens is important for cancer prevention efforts; however, standardized selection methods are not available. The objective of this paper was to describe the methods used by CAREX Canada in 2015 to establish priorities for preventing occupational cancer, with a focus on exposure estimation and descriptive profiles. Methods: Four criteria were used in an expert assessment process to guide carcinogen prioritization: (1) the likelihood of presence and/or use in Canadian workplaces; (2) toxicity of the substance (strength of evidence for carcinogenicity and other health effects); (3) feasibility of producing a carcinogen profile and/or an occupational estimate; and (4) special interest from the public/scientific community. Carcinogens were ranked as high, medium or low priority based on specific conditions regarding these criteria, and stakeholder input was incorporated. Priorities were set separately for the creation of new carcinogen profiles and for new occupational exposure estimates. Results: Overall, 246 agents were reviewed for inclusion in the occupational priorities list. For carcinogen profile generation, 103 were prioritized (11 high, 33 medium, and 59 low priority), and 36 carcinogens were deemed priorities for occupational exposure estimation (13 high, 17 medium, and 6 low priority). Conclusion: Prioritizing and ranking occupational carcinogens is required for a variety of purposes, including research, resource allocation at different jurisdictional levels, calculations of occupational cancer burden, and planning of CAREX-type projects in different countries. This paper outlines how this process was achieved in Canada; this may provide a model for other countries and jurisdictions as a part of occupational cancer prevention efforts.

Work Conditions and Practices in Norwegian Fire Departments From 1950 Until Today: A Survey on Factors Potentially Influencing Carcinogen Exposure

  • Jakobsen, Jarle;Babigumira, Ronnie;Danielsen, Marie;Grimsrud, Tom K.;Olsen, Raymond;Rosting, Cecilie;Veierod, Marit B.;Kjaerheim, Kristina
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • Background: Meta-analyses have shown firefighters to be at an increased risk of several cancer types. Occupational carcinogen exposure may explain these increased risks. This study aims to describe Norwegian fire departments' work conditions from 1950 until today, focusing on factors relevant for potential occupational carcinogen exposure. Methods: With the help of a reference group, we developed a questionnaire on topics related to occupational exposure to carcinogens for the period 1950-2018. Selected Norwegian fire departments provided department-specific responses. Results: Sixteen departments, providing fire services for 48% of the Norwegian population as of 2019 and mainly consisting of professional firefighters, responded to our questionnaire. The introduction of synthetic firefighting foams, more regular live fire training, the introduction of chemical diving, and a higher number of diesel-driven fire service vehicles were identified as changes thought to increase exposure to occupational carcinogens. Changes thought to decrease exposure included the switch from negative to positive pressure self-contained breathing apparatuses, the use of self-contained breathing apparatuses during all phases of firefighting, the use of ventilating fans during firefighting, increased attention to flammable materials used during live fire training, increased attention to handling and cleaning of turnout gear and other equipment, and installment of exhaust removal systems in apparatus bays. Conclusion: Norwegian fire departments' work conditions have seen several changes since 1950, and this could influence firefighters' occupational carcinogen exposure. A peak of carcinogen exposure may have occurred in the 1970s and 1980s before recent changes have reduced exposure.

A Study on Classification and Management System for arcinogens (발암물질 분류 및 관리 체계 고찰)

  • Choi, Sang-Jun;Lim, Kyong-Che
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.107-119
    • /
    • 2010
  • The aim of this study was to compare the carcinogen classification systems of developed countries or global organizations with domestic system under Industrial Safety and Health Act (ISHA). We selected the representative institutions which had carcinogen classification system such as International Agency for Research on Cancer (IARC), National Toxicological Program (NTP), Environmental Protection Agency (US-EPA), American Conference of Governmental Industrial Hygienists (ACGIH), and European Union (EU). We collected the carcinogen lists issued by 5 institutions, and merged by CAS number of each chemical with Microsoft Access 7.0. We found that confirmed human carcinogens, probable human carcinogens and possible human carcinogens were 34, 179, and 252, respectively. All of the institutions classified chemicals as 2 (NTP), 3 (EU) or 5 (IARC, ACGIH, US-EPA) categories based on the weight of scientific evidences for carcinogenicity and periodically updated the carcinogen list by regular procedure. However, a total of 90 chemicals could be classified as carcinogen under ISHA in Korea. There was no procedure or system which periodically update the carcinogen lists. In addition, the status of carcinogen classification according to regulation was confused. In conclusion, these findings suggest that the carcinogen classification and management system should be amended by consideration of systems of advanced institutions and the domestic regulation system.

Estimation of Lead Exposure Intensity by Industry Using Nationwide Exposure Databases in Korea

  • Koh, Dong-Hee;Park, Ju-Hyun;Lee, Sang-Gil;Kim, Hwan-Cheol;Jung, Hyejung;Kim, Inah;Choi, Sangjun;Park, Donguk
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.439-444
    • /
    • 2021
  • Background: In a previous study, we estimated exposure prevalence and the number of workers exposed to carcinogens by industry in Korea. The present study aimed to evaluate the optimal exposure intensity indicators of airborne lead exposure by comparing to blood lead measurements for the future development of the carcinogen exposure intensity database. Methods: Data concerning airborne lead measurements and blood lead levels were collected from nationwide occupational exposure databases, compiled between 2015 and 2016. Summary statistics, including the arithmetic mean (AM), geometric mean (GM), and 95th percentile level (X95) were calculated by industry both for airborne lead and blood lead measurements. Since many measurements were below the limits of detection (LODs), the simple replacement with half of the LOD and maximum likelihood estimation (MLE) methods were used for statistical analysis. For examining the optimal exposure indicator of airborne lead exposure, blood lead levels were used as reference data for subsequent rank correlation analyses. Results: A total of 19,637 airborne lead measurements and 32,848 blood lead measurements were used. In general, simple replacement showed a higher correlation than MLE. The results showed that AM and X95 using simple replacement could be used as optimal exposure intensity indicators, while X95 showed better correlations than AM in industries with 20 or more measurements. Conclusion: Our results showed that AM or X95 could be potential candidates for exposure intensity indicators in the Korean carcinogen exposure database. Especially, X95 is an optimal indicator where there are enough measurements to compute X95 values.

Necessity for a National Carcinogen List in Korea, Based on International Harmonization

  • Leem, Jong Han;Kim, Hwan Cheol;Park, Myungsook;Kim, Jung Ae;Kim, Shin-Bum;Ha, Mina;Lim, Min-Kyeong;Kim, Jeongseon;Park, Eun Young;Paek, Domyung
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.8.1-8.5
    • /
    • 2013
  • Cancer has been the leading cause of death in Korea for the last 30 years. Cancer patients' 5-year survival rate between 2005 and 2009 was 62.0%, representing a highly advanced standard of care, as much as developed countries in the EU and the US. The Korean government formulated its first 10-year plan for cancer control in 1996 and has been carrying out a second 10-year plan for cancer control since 2006. But despite the Korean government's efforts, the cancer burden in Korea continues to increase. Many separate laws have gone into effect concerning the management of carcinogen exposure. However, there are no integrated regulatory laws or management systems against carcinogen exposure in Korea. Dead zones remain where carcinogen exposure cannot be controlled properly in Korea. In this paper, we suggest the need to establish a national carcinogen list based on international harmonization as a prerequisite for a paradigm shift in cancer control policy from treatment to primary prevention.

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P-postlabeling$ assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relationships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl choride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

  • PDF

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.61-61
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P$-postlabeling assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relation ships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl chloride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

Cancer Mortality and Incidence in Cement Industry Workers in Korea

  • Koh, Dong-Hee;Kim, Tae-Woo;Jang, Seung-Hee;Ryu, Hyang-Woo
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.243-249
    • /
    • 2011
  • Objectives: Cement contains hexavalent chromium, which is a human carcinogen. However, its effect on cancer seems inconclusive in epidemiologic studies. The aim of this retrospective cohort study was to elucidate the association between dust exposure in the cement industry and cancer occurrence. Methods: The cohorts consisted of male workers in 6 Portland cement factories in Korea. Study subjects were classified into five groups by job: quarry, production, maintenance, laboratory, and office work. Cancer mortality and incidence in workers were observed from 1992 to 2007 and 1997-2005, respectively. Standardized mortality ratios and standardized incidence ratios were calculated according to the five job classifications. Results: There was an increased standardized incidence ratio for stomach cancer of 1.56 (27/17.36, 95% confidence interval: 1.02-2.26) in production workers. The standardized mortality ratio for lung cancer increased in production workers. However, was not statistically significant. Conclusion: Our result suggests a potential association between cement exposure and stomach cancer. Hexavalent chromium contained in cement might be a causative carcinogen.