• Title/Summary/Keyword: Occupants Load Density

Search Result 4, Processing Time 0.017 seconds

Prediction of Occupant Load Density using People Counting System in Discount Stores (무인계수시스템을 이용한 대형할인점의 재실자밀도 예측)

  • Seo, Dong-Goo;Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.53-59
    • /
    • 2017
  • The purpose of this study is to verify the suitability of the current standards by predicting the density of the occupant load density for discount stores. An internal data survey as well as an actual survey using a People Counting System (PCS) were employed to ascertain the number of occupants and 95% confidence interval of nationwide discount stores. According to the results of the actual survey, the time and days on which the maximum number of occupants were reached was from 16:00 to 18:00 and Christmas Eve and the weekend before New Year's Day, respectively. From the results of the maximum number of occupants, a regression equation was derived from the relationship between the internal data and the amount of sales, and this equation was verified in a previous study. Thus, the internal data of 50 discount stores were analyzed using this process. As a result, the 95% confidence interval was determined to be $2.7{\sim}2.9m^2/pers.$ and the error level was not large compared to the domestic and foreign standards. Therefore, this study proposes that a conservative estimate of the standard occupant load density for discount stores is $2.7m^2/pers.$

Estimating Door Open Time Distributions for Occupants Escaping from Apartments

  • Hopkin, Charlie;Spearpoint, Michael;Hopkin, Danny;Wang, Yong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • The door open time, resulting from occupants evacuating from apartments, is an important parameter when assessing the performance of smoke ventilation systems in high-rise apartment buildings. However, the values recommended in UK design guidance appear to have limited substantiation. Monte Carlo simulations have been carried out considering variabilities in door swing time, flow rate and number of occupants. It has been found that the door open time can be represented by a lognormal distribution with a mean of 6.6, 8.7 and 11.1 s and a standard deviation of 1.7, 3.2 and 4.7 s for one, two and three-bedroom apartments, respectively. For deterministic analyses, it is proposed that the 95th percentile values may be adopted in line with recommended practice for other fire safety design parameters such as fuel load density and soot yield, giving door open times of 10 s to 19 s, depending on the number of bedrooms.

A Basic Study on the Evacuation Safety Performance of High-rise Apartment Building (고층 공동주택의 피난성능에 관한 기초적 연구)

  • 이용재
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.75-83
    • /
    • 2001
  • It has been recognized that the evacuation planning is very important for effective evacuation of occupants on fire event. However the present evacuation planning and regulation for fire safety usually tend to meet the minimum requirements based on the existing laws and regulations. The ultimate goal of the evacuation planning is evacuate occupants rapidly from building fires to the safe areas. In this study, First, analyzed occupants load density and occupants characteristics in high-rise apartment buildings, Second, A evacuation safety performance of high-rise apartment buildings was analyzed with various typical floor plans. The purpose of this study is to figure out the evacuation characteristics in high-rise apartment buildings and improve countermeasure through comparative study on the Evacuation regulation and floor plans for High-rise Apartment buildings.

  • PDF

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.