• Title/Summary/Keyword: Occupant Safety

Search Result 174, Processing Time 0.028 seconds

A Study of Symmetry in Speed of Two Identical Vehicles in a Frontal Oblique Crash (동일 차량간 충돌 시 차량간 속도 대칭성 연구)

  • Myeonggyu, An;Ho, Kim;Young Myung, So
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.100-105
    • /
    • 2022
  • Oblique car to car frontal impact is quite common on the road and series of studies have been done to realize this in the lab. At a certain angle of oblique crash a car (ego) is to travel at a speed of xkm/h to hit the other car(traffic) which is approaching to ego at a speed of ykm/h. Symmetry of the speed of two vehicles, x vs. y, is studied with respect to the impulse of the ego vehicle as well as occupant injury. If there is symmetry of speed of two vehicles, number of case studies needed to analyze the oblique frontal impact may decrease: ex. in the case of 30degree oblique crash 40km/h (ego) / 80km/h (traffic) will show the similar behavior as 80km/h (ego) / 40km/h (traffic) crash.

Facial Injury after Airbag Deployment in Occupant Motor Vehicle Accident (자동차 교통사고 시 에어백에 의한 안면부 손상특성)

  • Lee, Hee-Young;Lee, Kang-Hyun;Lee, Jung-Hun;Sung, Sil;Kang, Chan-Young;Kim, Ho-Jung;Kim, Sang-Chul;Youn, Young-Han
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.10-15
    • /
    • 2016
  • The purpose of this study is to evaluate the injury mechanism of facial injury related to an air-bag's deployment in occupant motor vehicle accident (MVA) by using Hospital Information System (HIS) and reconstruction program, based on the materials related to motor vehicle accidents. Among patients who visited the emergency department of Wonju Severance Christian Hospital due to motor vehicle accidents from August 2012 to February 2014, we collected data on patients with agreement for taking the damaged vehicle's photos. After obtaining the verbal consent from the patient, we asked about the cause of the accident, information on vehicle involved in the accident, and the location of car repair shop. The photos of the damaged vehicle were taken on the basis of front, rear, left side and right side. Damage to the vehicle was presented using the CDC code by analytical study of photo-images of the damaged vehicle, and a trauma score was used for medical examination of the severity of the patient's injury. Among the 309 patients with agreement for an investigation, thirty five (11.3 %) were the severe who had ISS over 15. And also, sixteen (5.2%) derived from the reconstructed data (maximum collision energy, maximum acceleration, delta V) by PC-Crash. As a result, ISS including the facial injuries was affected by the condition. It was high when the number of crash extent, the safety belt was not fastened, and the seating position of occupant and the direction of collision is same. For accurate analysis of the relationship between occupant injury and vehicle damage in MVAs, build-up of an in-depth database through carrying out various policies for motor vehicle accidents is necessary for sure.

Comparison of Evacuation Efficiency for Stair Width and Code for Occupant Load Calculation in High-rise Buildings (고층의 주상복합건축물 계단폭과 수용인원 산정기준에 따른 피난효율의 비교)

  • Lee, Yang-Ju;Ko, Kyoung-Chan;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • An evacuation simulation was carried out to confirm evacuation efficiency for stair width and problems in calculation of occupant load for high-rise buildings. The evacuation time and number of evacuated persons from a 39 story condominium-mercantile building were calculated by using Simulex for stair widths of 1.2 m, 1.5 m, and 1.8 m. The total occupant load based on the Korean code was higher than the number of actual residents by 2.3 times, and that based on the NFPA 101 Life Safety Code by 2.6 times, respectively. For the occupant load based on the Korean code, smaller stair width resulted in lower evacuation efficiencies due to bottlenecks in egress. For the actual residents and NFPA code-based occupant load, a high evacuation efficiency and negligible effects of the stair width on evacuation efficiency were confirmed. It was shown that there was a bottleneck even at the stair width of 1.8 m for the Korean code-based occupants, while the stair width of 1.2 m provided safe egress to the actual residents or NFPA code-based occupants. This recommended further studies on possibility of lowering the level of the Korean code in calculation of the occupant load.

Analysis on the Factors Affecting the Results of Full Frontal Barrier Impact Test (고정벽 정면충돌시험 결과에 미치는 요인 분석)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The objective of this study was to find the factors affecting the results of full frontal barrier impact test for the NCAP (New Car Assessment Program). To find the factors, the frontal NCAP test results of the NHTSA (National Highway Traffic Safety Administration) were utilized. The three tested vehicle were same model year. It was observed the second peak value of barrier force affected the occupant injury risk. As the second peak value of the barrier force increases, the injury risk of the driver side occupant increases as well.

Child Occupant Safety According to the ISOFIX Type of CRS (CRS의 부착방식에 따른 어린이 탑승자 안전도 비교)

  • 이재완;윤영한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.86-93
    • /
    • 2003
  • These days, automobile industry pays considerable attention to child occupant safety. As the US adopted requirements for universal and uniform anchor systems for child restraints, manufacturers for child seats put an enormous effort to improve the protective properties of Child Restraint System (CRS). Various standards have been studied and announced by different countries. The anchorage system is the most important in the CRS and the rules of universal anchor are to provide devices which are independent of safety belts. A new concept called International Standard Organization Fixture (ISOFIX) has been announced. It suggests some designs for the CRS. In this study, the suggested designs are evaluated with domestic products. Tests are performed and the results are incorporated into a finite element modeling process. As the finite element model is established, various numerical tests are conducted and the numerical results are discussed. A commercial software system is utilized for the nonlinear finite element analysis.

Development of a Real-time Safest Evacuation Route using Internet of Things and Reinforcement Learning in Case of Fire in a Building (건물 내 화재 발생 시 사물 인터넷과 강화 학습을 활용한 실시간 안전 대피 경로 방안 개발)

  • Ahn, Yusun;Choi, Haneul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.97-105
    • /
    • 2022
  • Human casualties from fires are increasing worldwide. The majority of human deaths occur during the evacuation process, as occupants panic and are unaware of the location of the fire and evacuation routes. Using an Internet of Things (IoT) sensor and reinforcement learning, we propose a method to find the safest evacuation route by considering the fire location, flame speed, occupant position, and walking conditions. The first step is detecting the fire with IoT-based devices. The second step is identifying the occupant's position via a beacon connected to the occupant's mobile phone. In the third step, the collected information, flame speed, and walking conditions are input into the reinforcement learning model to derive the optimal evacuation route. This study makes it possible to provide the safest evacuation route for individual occupants in real time. This study is expected to reduce human casualties caused by fires.

Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck (대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발)

  • O, Jae-Yun;Kim, Hak-Deok;Song, Ju-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.

A Occupant Load Density and Computer Modelling of Evacuation time in Office Buildings (사무소 건물의 거주밀도 분포와 피난시간 예측)

  • Kim, Un-Hyeong;Rui, Hu;Kim, Hong
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.35-42
    • /
    • 1999
  • A occupant load density of contemporary office buildings were surveyed by a building w walk through procedure in Korea. The survey results of ten office buildings are range from 1 2 2 2 213.14 m !person 041.4 ft !person) to 22.69 m /person (244.34 ft !person) with 95% confidence l level and the mean occupant load density is 17.92 m2/person 092.87 ft2/야rson). The impacts of occupant load on evacuation flow time was analyzed by applying time-based egress m model, SIMULEX with various occupant load densities from previous studies. I In order to demonstrate the validation of egress modeling method, fire evacuation exercise a and computer simulation were used to simulate the actual evacuation plan for a high-rise office building. An analysis and comparison of the results of these approaches was made to i illustrate the influence of model limitations on the result of prediction The result of the study shows that the introduction of occupant load concept in building c code of Korea is essential to achieving resonable building life safety design in future.

  • PDF

A Study on Wheelchair Occupant Injury in Wheelchair Accessible Vehicle by the Sled Test (충돌모의(Sled) 시험에 의한 특별교통수단 휠체어 탑승자 상해에 관한 연구)

  • Kim, Taeyong;Shim, Sojung;Kim, Siwoo;Kang, Byungdo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.140-148
    • /
    • 2017
  • Accidents involving wheelchair accessible vehicles have been frequently occurring since the introduction of these vehicles in the Korean market. However, detailed regulations, which are required to ensure the safety of the wheel-chair occupants, are unavailable. In this study, both domestic and international vehicle safety regulations are analyzed in order to select the regulations that are similar to the transportation environment of Korea. Sled tests with an actual wheel-chair accessible vehicle were carried out based on the analyzed regulation requirements, as well as the values of the HIC, belt loads, dummy movements, and wheelchair movements. The test results showed that the movements of the dummy and the wheelchair did not meet the criteria of the regulation due to the improper positioning of the restraint systems.