• Title/Summary/Keyword: Occupancy Detection

Search Result 67, Processing Time 0.031 seconds

A Non-contact Realtime Heart Rate Estimation Using IR-UWB Radar (IR-UWB 레이더를 이용한 비접촉 실시간 심박탐지)

  • Byun, Sang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In recent years, a non-contact respiration and heart rates monitoring via IR-UWB radar has been paid much attention to in various applications - patient monitoring, occupancy detection, survivor exploring in disaster area, etc. In this paper, we address a novel approach of real time heart rate estimation using IR-UWB radar. We apply sine fitting and peak detection method for estimating respiration rate and heart rate, respectively. We also deploy two techniques to mitigate the error caused by wrong estimation of respiration rate: a moving average filter and finding the frequency of the highest occurrence. Experimental results show that the algorithm can estimate heart rate in real time when respiration rate is presumed to be estimated accurately.

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

A Study of Traffic Incident Flow Characteristics on Korean Highway Using Multi-Regime (Multi-Regime에 의한 돌발상황 시 교통류 분석)

  • Lee Seon-Ha;kang Hee-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.43-56
    • /
    • 2005
  • This research has examined a time series analysis(TSA) of an every hour traffic information such as occupancy, a traffic flow, and a speed, a statistical model of a surveyed data on the traffic fundamental diagram and an expand aspect of a traffic jam by many Parts of the traffic flow. Based on the detected data from traffic accidents on the Cheonan-Nonsan high way and events when the road volume decreases dramatically like traffic accidents it can be estimated from the change of occupancy right after accidents. When it comes to a traffic jam like events the changing gap of the occupancy and the mean speed is gentle, in addition to a quickness and an accuracy of a detection by the time series analyse of simple traffic index is weak. When it is a stable flow a relationship between the occupancy and a flow is a linear, which explain a very high reliability. In contrast, a platoon form presented by a wide deviation about an ideal speed of drivers is difficult to express by a statical model in a relationship between the speed and occupancy, In this case the speed drops shifty at 6$\~$8$\%$ occupancy. In case of an unstable flow, it is difficult to adopt a statistical model because the formation-clearance Process of a traffic jam is analyzed in each parts. Taken the formation-clearance process of a traffic jam by 2 parts division into consideration the flow having an accident is transferred to a stopped flow and the occupancy increases dramatically. When the flow recovers from a sloped flow to a free flow the occupancy which has increased dramatically decrease gradually and then traffic flow increases according as the result analyzed traffic flow by the multi regime as time series. When it is on the traffic jam the traffic flow transfers from an impeded free flow to a congested flow and then a jammed flow which is complicated more than on the accidents and the gap of traffic volume in each traffic conditions about a same occupancy is generated huge. This research presents a need of a multi-regime division when analyzing a traffic flow and for the future it needs a fixed quantity division and model about each traffic regimes.

  • PDF

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

Analysis on Video Image Detection System Performance by Vehicle Speed (차량 속도별 영상검지기 성능분석)

  • Jang, Jin-Hwan;Park, Chang-Soo;Baik, Nam-Cheol;Lee, Mee-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.105-112
    • /
    • 2005
  • This paper not only tests VIDS(Video Image Detection System) performance by vehicle speed group but also suggests optimal VIDS height considering road and cost condition. The VIDS spreads over freeway and national highway and plays an important role in ITS(Intelligent Transportation Systems). As a result, speed data accuracy drops form 50kph vehicle speed and volume and occupancy data accuracy drop from 30kph. Lowest speed data accuracy is only 88%, but volume and occupancy accuracy are 75% and 77% respectively. The reason VIDS data accuracy drop by vehicle speed is gap distance decrease between vehicles. Therefore, this paper suggests $17m{\sim}21m$ for optimal VIDS height considering road and cost condition.

An Efficient Control Sy7stem for Intelligent LED Indoor Lighting (지능형 LED 실내조명을 위한 효율적인 제어 시스템)

  • Hong, Sung-Il;Yoon, Su-Jeong;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.235-243
    • /
    • 2014
  • In this paper, we propose an efficient control system for intelligent LED indoor lighting. The proposed an efficient control system for intelligent LED indoor lighting were included to elements such as daylight intensity measured through the PIR sensor and illuminance sensor at lighting style by the schedule defined and the occupancy detection. And it was controlled lighting through to the wireless sensor network, and was designed for the energy savings. Also, the lighting control of indoor lighting based on occupancy detection detect fine movements using a PIR sensor. And an unnecessary lighting intensity control of the window-side and the inside were controlled according to daylight level measurement result using the light sensor. In daylight inflow many case, the window-side lighting was to automatically darker, and in daylight inflow less case, was designed to be automatically bright. The efficiency validate results of an efficient control system for intelligent LED indoor lighting, the brightness of the indoor light were to maximize the energy saving by controlling in real time when entering as indoor a little that external lighting or daylight.

Determination of Optimum Threshold for Accuracy of People-counting System Based on Motion Detection

  • Ryu, Hanseul;Song, Junho;Lee, Boram;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.299-304
    • /
    • 2015
  • Objectives: A people-counting system measures real-time occupancy through motion detection. Accurate people-counting can be used to calculate suitable ventilation demands. This study determined the optimum motion threshold for a people-counting system. Methods: In a closed room with two occupants moving constantly, different thresholds were tested for the accuracy of a people-counting system. The experiments were conducted at 150, 300, 450 and 600 lux. These levels of brightness included the illumination levels of most public indoor areas. The experiments were repeated with three types of clothing coloration. Results: Overall, a threshold of 16 provided the lowest mean error percentage for the people-counting system. Brightness and clothing color did not have a significant impact on the results. Conclusion: A people-counting system could be used with threshold of 16 for most indoor environments.

A Study on the Trigger Technology for Vehicle Occupant Detection (차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구)

  • Lee, Dongjin;Lee, Jiwon;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.120-122
    • /
    • 2021
  • Currently, as demand for cars at home and abroad increases, the number of vehicles is decreasing and the number of vehicles is increasing. This is the main cause of the traffic jam. To solve this problem, it operates a high-ocompancy vehicle (HOV) lane, a multi-passenger vehicle, but many people ignore the conditions of use and use it illegally. Since the police visually judge and crack down on such illegal activities, the accuracy of the crackdown is low and inefficient. In this paper, we propose a system design that enables more efficient detection using imaging techniques using computer vision to solve such problems. By improving the existing vehicle detection method that was studied, the trigger was set in the image so that the detection object can be selected and the image analysis can be conducted intensively on the target. Using the YOLO model, a deep learning object recognition model, we propose a method to utilize the shift amount of the center point rather than judging by the bounding box in the image to obtain real-time object detection and accurate signals.

  • PDF

A Study on Incident Detection Model using Fuzzy Logic and Traffic Pattern (퍼지논리와 교통패턴을 이용한 유고검지 모형에 관한 연구)

  • Hong, Nam-Kwan;Choi, Jin-Woo;Yang, Young-Kyu
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2007
  • In this paper we proposed and implemented an incident detection model which combines fuzzy algorithm and traffic pattern in order to enhance the efficiency of incident detection for the highways with lamps. Most of the existing algorithms dealt with highways without lamps and can not be used for detecting incidents in the highways with lamps. The data used for model building are traffic volume, occupancy, and speed data. They have been collected by a loop sensor at 5 minutes interval at a point in the Internal Circular Highway of Seoul for the period of 3 months. In this model, the three parameters collected by sensor were fuzzified and combined with the daily traffic pattern of the link. The test of efficiency of the propsed model was performed by comparing the result of proposed model with traditional APID algorithm and fuzzy algorithm without the pattern data respectively. The result showed significant amount of improvement in reducing the false incident detection rate by 18%.

  • PDF

A Generalized Markovian Based Framework for Dynamic Spectrum Access in Cognitive Radios

  • Muthumeenakshi, K.;Radha, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1532-1553
    • /
    • 2014
  • Radio spectrum is a precious resource and characterized by fixed allocation policy. However, a large portion of the allocated radio spectrum is underutilized. Conversely, the rapid development of ubiquitous wireless technologies increases the demand for radio spectrum. Cognitive Radio (CR) methodologies have been introduced as a promising approach in detecting the white spaces, allowing the unlicensed users to use the licensed spectrum thus realizing Dynamic Spectrum Access (DSA) in an effective manner. This paper proposes a generalized framework for DSA between the licensed (primary) and unlicensed (secondary) users based on Continuous Time Markov Chain (CTMC) model. We present a spectrum access scheme in the presence of sensing errors based on CTMC which aims to attain optimum spectrum access probabilities for the secondary users. The primary user occupancy is identified by spectrum sensing algorithms and the sensing errors are captured in the form of false alarm and mis-detection. Simulation results show the effectiveness of the proposed spectrum access scheme in terms of the throughput attained by the secondary users, throughput optimization using optimum access probabilities, probability of interference with increasing number of secondary users. The efficacy of the algorithm is analyzed for both imperfect spectrum sensing and perfect spectrum sensing.