• Title/Summary/Keyword: Occlusal analysis

Search Result 455, Processing Time 0.025 seconds

FINITE ELEMENT STRESS ANALYSIS OF A TOOTH RESTORED WITH CAD/CAM CERAMIC INLAY (CAD/CAM 세라믹 인레이로 수복한 치아의 응력분포에 관한 유한요소법적 연구)

  • 송보경;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.464-484
    • /
    • 2001
  • When restoring a tooth, the dentist tries to choose the ideal material for existing situation. One criterion that is considered is its suitability for restoring coronal strength. As more tooth structure is removed, the cusps are weakened and susceptible to fracture. Further, this increased deformation may cause the formation of intermittent gaps at the margin between the hard tissue and the restoration, facilitating marginal leakage. The improvements in ceramic materials now make it possible for alternatives to amalgams, composites, and cast metal to be of offered for posterior teeth. Of the materials used, ceramics most closely approximates the properties of enamel. The introduction of computer-aided design/computer-aided manufacture(CAD/CAM) systems to restorative dentistry represents a major technological breakthrough. It is possible to design and fabricate ceramic restorations at a single appointment. Additionally, CAD/CAM systems eliminate certain errors and inaccuracies that are inherent to the indirect method and provide an esthetic restoration. The aim of this investigation was to study the loading characteristics of CAD/CAM ceramic inlay and to compare the stress distribution and displacement associated with different designs of cavity(the isthmus width and cavity depth). A human maxillary left first premolar was prepared with standard mesio-occlusal cavity preparation, as recommended by the manufacturer Ceramic inlay was fabricated with CEREC 2 CAD/CIM equipment and cemented into the prepared cavity. Three dimensional model was made by the serial photographic method. The cavity width was varied $\frac{1}{3}$, $\frac{1}{2}$ and $\frac{2}{3}$ of intercuspal distance between buccal and lingual cusp tip. The cavity depth was varied 1.5mm and 2.3mm. So six models were constructed to simulate six conditions. A point load of 500N was applied vertically onto the first node of the lingual slope from the buccal cusp tip. The stress distribution and displacement were solved using ANSYS finite element program(Swanson Analysis System). (omitted)

  • PDF

Three-dimensional finite element analysis of buccally cantilevered implant-supported prostheses in a severely resorbed mandible

  • Alom, Ghaith;Kwon, Ho-Beom;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.12-23
    • /
    • 2021
  • Purpose. The aim of the study was to compare the lingualized implant placement creating a buccal cantilever with prosthetic-driven implant placement exhibiting excessive crown-to-implant ratio. Materials and Methods. Based on patient's CT scan data, two finite element models were created. Both models were composed of the severely resorbed posterior mandible with first premolar and second molar and missing second premolar and first molar, a two-unit prosthesis supported by two implants. The differences were in implants position and crown-to-implant ratio; lingualized implants creating lingually overcontoured prosthesis (Model CP2) and prosthetic-driven implants creating an excessive crown-to-implant ratio (Model PD2). A screw preload of 466.4 N and a buccal occlusal load of 262 N were applied. The contacts between the implant components were set to a frictional contact with a friction coefficient of 0.3. The maximum von Mises stress and strain and maximum equivalent plastic strain were analyzed and compared, as well as volumes of the materials under specified stress and strain ranges. Results. The results revealed that the highest maximum von Mises stress in each model was 1091 MPa for CP2 and 1085 MPa for PD2. In the cortical bone, CP2 showed a lower peak stress and a similar peak strain. Besides, volume calculation confirmed that CP2 presented lower volumes undergoing stress and strain. The stresses in implant components were slightly lower in value in PD2. However, CP2 exhibited a noticeably higher plastic strain. CONCLUSION. Prosthetic-driven implant placement might biomechanically be more advantageous than bone quantity-based implant placement that creates a buccal cantilever.

Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: a comparative analysis between subtractive and additive manufacturing

  • Kim, Yong-Kyu;Han, Jung-Suk;Yoon, Hyung-In
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2022
  • PURPOSE. This in-vitro analysis aimed to compare the intaglio trueness, the antagonist's wear volume loss, and fracture load of various single-unit zirconia prostheses fabricated by different manufacturing techniques. MATERIALS AND METHODS. Zirconia crowns were prepared into four different groups (n = 14 per group) according to the manufacturing techniques and generations of the materials. The intaglio surface trueness (root-mean-square estimates, RMS) of the crown was measured at the marginal, axial, occlusal, and inner surface areas. Half of the specimens were artificially aged in the chewing simulator with 120,000 cycles, and the antagonist's volume loss after aging was calculated. The fracture load for each crown group was measured before and after hydrothermal aging. The intaglio trueness was evaluated with Welch's ANOVA and the antagonist's volume loss was assessed by the Kruskal-Wallis tests. The effects of manufacturing and aging on the fracture resistance of the tested zirconia crowns were determined by two-way ANOVA. RESULTS. The trueness analysis of the crown intaglio surfaces showed surface deviation (RMS) within 50 ㎛, regardless of the manufacturing methods (P = .053). After simulated mastication, no significant differences in the volume loss of the antagonists were observed among the zirconia groups (P = .946). The manufacturing methods and simulated chewing had statistically significant effects on the fracture resistance (P < .001). CONCLUSION. The intaglio surface trueness, fracture resistance, and antagonist's wear volume of the additively manufactured 3Y-TZP crown were clinically acceptable, as compared with those of the 4Y- or 5Y-PSZ crowns produced by subtractive milling.

Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis (티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

An influence of operator's posture on the shape of prepared tooth surfaces for fixed partial denture (진료자세가 고정성 국소의치의 지대치 삭제에 미치는 영향)

  • Won, In-Jae;Kwon, Kung-Rock;Pae, Ah-Ran;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.38-48
    • /
    • 2011
  • Purpose: Dentists suffer back, neck and shoulder pain during their careers due to bad operating posture. If dentists have a good operating posture ergonomically, there would be less pain and discomfort in the shoulder and back. Therefore, dentists should learn the Home position which enables dentists to approach a stable posture ergonomically. This study was to compare tooth preparation in the Home position and the Random position, and evaluate the clinical efficacy of the Home position. Materials and methods: Tooth preparation for fixed partial denture was performed on the maxillary left 2nd premolar and maxillary left 2nd molar at the two different operating positions were compared. The amount of occlusal reduction, marginal width, subgingival margin depth, and convergence angle were measured. A T-test was performed separately to compare the results of the Random position and the Home position. Results: 1. The amounts of average thickness of occlusal reduction on fossa were deficient to the ordered ones in the Random position and the Home position (P > .05). 2. The average subgingival margin depth of prepared margin on maxillary left 2nd premolar, maxillary left 2nd molar were excessive in the Random position than in the Home position. On the maxillary left 2nd premolar, there was no statistical difference in the Random position and the Home position except Distal midline, DL line angle, Lingual midline, ML line angle (P< .05). On the maxillary left 2nd molar, there was no statistical difference in the Random position and the Home position (P < .05). 3. Average convergence angle in the Random position and the Home position were excessive compared to the ordered angle. There was no statistical difference in the Random position and the Home position (P > .05). 4. Analysis of pearson correlation : In the Random position, the amounts of average thickness of occlusal reduction, the average subgingival margin depth of prepared margin, convergence angle were significantly associated with each other (P < .05). But in the Home position, they were not significantly associated with each other (P < .05). 5. The time needed for preparation in the Home position was faster or equal than that of the Random position as time went on. Conclusion: In conclusion, there were no significant differences between Home position and Random position in measures of occlusal reduction, marginal width, marginal depth, convergence angle. However, preparation time and incidence of damaging adjacent teeth were less in Home position than in Random position. Therefore, if trained properly, Home position which is more ergonomically stable can be adopted for clinical use.

Clinical study on the comparison of gold and zirconia wear in an implant-supported fixed prosthesis (임플란트 지지 고정성 보철물에서 금과 지르코니아의 마모 비교에 대한 임상 연구)

  • Kim, Jee-Hwan;Yang, Seung-Won;Oh, NamSik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.252-259
    • /
    • 2017
  • Purpose: The purpose of this study was to compare and analyze the wear of a prosthesis for 6 months after restoration with implant-supported fixed dental prosthesis made of either zirconia or gold. Materials and Methods: This study was conducted on patients requiring implant-supported fixed dental prostheses on first or second molar from January, 2015 to January, 2016. A total of 47 prostheses and antagonists were examined. Occlusal surface was recorded by impression of each prosthesis and antagonist 1 week and 6 months after prosthesis delivery. The digital files were created by impression scan. Occlusal shapes of 1 week and 6 months were compared and wear of prostheses and antagonists was analyzed. The Mann-Whitney test was used to analyzed the result data underwent normality test using SPSS (Version 23.0, IBM Corporation) Results: Mann-Whitney test revealed that there was no statistically significant difference in the median amount of mean vertical wear for 6 months in zirconia ($50.84{\mu}m$) and gold ($42.84{\mu}m$) prostheses (P > 0.05). When the opposing teeth were natural, the median amount of mean vertical wear of zirconia and gold prostheses was $47.72{\mu}m$ and $41.97{\mu}m$, respectively, and the median amount of mean vertical wear of enamel was $47.26{\mu}m$ and $44.59{\mu}m$, respectively. Statistical analysis showed no significant difference (P > 0.05). Conclusion: Despite the short study period and the small number of experimental groups, zirconia and gold showed no significant difference in wear during the first 6 months. Opposing natural enamel also showed no significant difference in the wear.

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel. undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesio-distally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference on fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even of that portion consists of mainly enamel and a little dentin structure.

  • PDF

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel, undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesiodistally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference in fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even if that portion consists of mainly enamel and a little dentin structure.

Comparison of marginal and internal fit of 3-unit monolithic zirconia fixed partial dentures fabricated from solid working casts and working casts from a removable die system (가철성 다이 시스템으로 제작된 작업 모형과 솔리드 작업 모형 상에서 제작된 지르코니아 3본 고정성 치과 보철물의 변연 및 내면 적합도 비교)

  • Wan-Sun Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.72-81
    • /
    • 2024
  • Purpose: This study aimed to assess the marginal and internal fit of 3-unit monolithic zirconia fixed partial dentures (FPDs) fabricated via computer-aided design and computer-aided manufacturing (CAD/CAM) from solid working casts and removable die system. Materials and Methods: The tooth preparation protocol for a zirconia crown was executed on the mandibular right first premolar and mandibular right first molar, with the creation of a reference cast featuring an absent mandibular right second premolar. The reference cast was duplicated using polyvinyl siloxane impression, from which 20 working casts were fabricated following typical dental laboratory procedures. For comparative analysis, 10 FPDs were produced from a removable die system (RD group) and the remaining 10 FPDs from the solid working casts (S group). The casts were digitized using a dental desktop scanner to establish virtual casts and design the FPDs using CAD. The definitive 3-unit monolithic zirconia FPDs were fabricated via a CAM milling process. The seated FPDs on the reference cast underwent digital evaluation for marginal and internal fit. The Mann-Whitney U test was applied for statistical comparison between the two groups (α = 0.05). Results: The RD group showed significantly higher discrepancies in fit for both premolars and molars compared to the S group (P < 0.05), particularly in terms of marginal and occlusal gaps. Color mapping also highlighted more significant deviations in the RD group, especially in the marginal and occlusal regions. Conclusion: The study found that the discrepancies in marginal and occlusal fits of 3-unit monolithic zirconia FPDs were primarily associated with those fabricated using the removable die system. This indicates the significant impact of the fabrication method on the accuracy of FPDs.

A Comparison of pre and post-surgical characteristics in skeletal Class III malocclusion patients using counterpart analysis (구조적 대응체 분석법에 의한 골격성 II급 부정교합 환자의 악교정 수술전후의 비교)

  • Sohn, Byung-Wha;Kyung, Seung-Hyun;Kim, Beom-soo
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.93-107
    • /
    • 2004
  • Enlow's counterpart analysis explains the complex with anatomic and developmental characteristics where craniofacial aspect of Individuals has been developed. Counterpart analysis does not compare individual measurement with the normal value from the average of majority but analyzes by comparison of values that each individual has. In this study we examined surgical changes in skeletal Class III malocclusion patients(male 40, female 40) and compared them with normal occlusion patients using counterpart analysis. The results indicated that : 1. Skeletal anterior-posterior discrepancy was relieved by shortening of the ramus width(B3). 2. The ramus alignment(R3, R4) was displaced posteriorly and the occlusal plane angle(R5) was rotated clockwise. 3. Skeletal Class III pattern was relieved in the post-operative group, but differences in the level of the cranium(R1, R2) was remaining compared to the normal occlusion patients. 4. In the comparison of surgery methods, the two-jaw surgery group presented changes In the maxillary length(A4), ramus alignment(R3, R4) and occlusal plane angle(R5) compared to the one-jaw surgery group, but the differences were not significant. In the past study about Korean skeletal Class m patients, the skeletal characteristics are upward backward rotation of the cranial base, posterior displacement of the maxilla, forward inclination of the ramus and lengthening of the mandibular body, but in this study, skeletal Class m pattern was relieved by shortening of the ramus width and maxillary advancement by orthognathic surgery, because orthognathic surgery is usually performed on limited areas in the maxilla and the mandible.