• 제목/요약/키워드: Obstacles control

검색결과 577건 처리시간 0.027초

군집 로봇의 포메이션 이동 제어 (Formation Motion Control for Swarm Robots)

  • 라병호;김성호;주영훈
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2147-2151
    • /
    • 2011
  • In this paper, we propose the formation control algorithm for swarm robots. The proposed algorithm uses the artificial potential field(APF) to plan the global path of swarm robots and to control the formation movement. The navigation function generates a global APF for a leader robot to reach a given destination and an avoidance function generates a local APF for follow robots to avoid obstacles. Finally, some simulations show the validity of the proposed method.

모바일 로봇의 충돌회피 알고리즘 개발 (A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot)

  • 노연 후 콩;김기복;조상영
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.99-109
    • /
    • 2015
  • This study proposes a new approach to analyze the impedance and the elasticity of a serial chain of spring-damper system, areal-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-position adjustment to solve a collision problem by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process,, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative is carried out by the system of robots. A control technology is proposed to implement for mobile robot.

전동휠체어 주행안전을 위한 3차원 깊이카메라 기반 장애물검출 (3D Depth Camera-based Obstacle Detection in the Active Safety System of an Electric Wheelchair)

  • 서준호;김창원
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.552-556
    • /
    • 2016
  • Obstacle detection is a key feature in the safe driving control of electric wheelchairs. The suggested obstacle detection algorithm was designed to provide obstacle avoidance direction and detect the existence of cliffs. By means of this information, the wheelchair can determine where to steer and whether to stop or go. A 3D depth camera (Microsoft KINECT) is used to scan the 3D point data of the scene, extract information on obstacles, and produce a steering direction for obstacle avoidance. To be specific, ground detection is applied to extract the obstacle candidates from the scanned data and the candidates are projected onto a 2D map. The 2D map provides discretized information of the extracted obstacles to decide on the avoidance direction (left or right) of the wheelchair. As an additional function, cliff detection is developed. By defining the "cliffband," the ratio of the predefined band area and the detected area within the band area, the cliff detection algorithm can decide if a cliff is in front of the wheelchair. Vehicle tests were carried out by applying the algorithm to the electric wheelchair. Additionally, detailed functions of obstacle detection, such as providing avoidance direction and detecting the existence of cliffs, were demonstrated.

노인의 정적인 자세로부터 장애물 보행 시 장애물 높이의 변화가 평형감각에 미치는 효과 (The Effect of Obstacle Height on Balance Control While Stepping Over an Obstacle From a Position of Quiet Stance in Older Adults)

  • 김형동
    • The Journal of Korean Physical Therapy
    • /
    • 제21권3호
    • /
    • pp.75-80
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effect of an obstacle height on the balance control of older adults while stepping over an obstacle from a position of quiet stance. Methods: Fifteen community-dwelling healthy older adults (mean age, $74.4\pm4.27$ yrs; age range, 67-82 yrs) volunteered to participate in this study. The subjects performed gait initiation (GI) and they stepped over obstacles of two different heights (10 cm and 18 cm) at a self-paced speed from a position of quiet stance. Their performance was assessed by recording the changes in the displacement of the COP in the anteroposterior (A-P) and mediolateral (M-L) directions using a force platform. Results: The M-L displacement of the COP significantly increased for an 18 cm obstacle height condition as compared to the GI and a 10 cm obstacle height condition (p<0.01). Furthermore, the M-L displacement of the COP for a 10 cm high obstacle was significantly greater for that for the GI (p<0.01). However, the mean of the A-P displacement of the COP was similar between the stepping conditions for the A-P displacement of the COP (p>0.05). Conclusion: This study suggests that the M-L COP displacement could be a better parameter to identify the dynamic balance control in older adults when negotiating obstacles.

  • PDF

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

스카라 로봇을 위한 충돌 회피 경로 계획 (Collison-Free Trajectory Planning for SCARA robot)

  • 김태형;박문수;송성용;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF

무인선박의 자율운항을 위한 저가형 LiDAR센서 기반의 장애물 회피 시스템 구현 (Implementation of an Obstacle Avoidance System Based on a Low-cost LiDAR Sensor for Autonomous Navigation of an Unmanned Ship)

  • 송현우;이광국;김동헌
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.480-488
    • /
    • 2019
  • In this paper, we propose an obstacle avoidance system for an unmanned ship to navigate safely in dynamic environments. Also, in this paper, one-dimensional low-cost lidar sensor is used, and a servo motor is used to implement the lidar sensor in a two-dimensional space. The distance and direction of an obstacle are measured through the two-dimensional lidar sensor. The unmanned ship is controlled by the application at a Tablet PC. The user inputs the coordinates of the destination in Google maps. Then the position of the unmanned ship is compared with the position of the destination through GPS and a geomagnetic sensor. If the unmanned ship finds obstacles while moving to its destination, it avoids obstacles through a fuzzy control-based algorithm. The paper shows that the experimental results can effectively construct an obstacle avoidance system for an unmanned ship with a low-cost LiDAR sensor using fuzzy control.

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

Obstacle Avoidance Using Velocity Dipole Field Method

  • Munasinghe, Sudath R.;Oh, Chang-Mok;Lee, Ju-Jang;Khatib, Oussama
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1657-1661
    • /
    • 2005
  • The velocity dipole field method is presented for real-time collision avoidance of mobile robots. The direction of motion of the obstacle is used as the axis of the dipole field, and the speed of the obstacle is used to proportionally strengthen the dipole field. The elliptical field lines of the dipole field are useful to skillfully guide the robot around obstacles, quite similar to the way humans avoid moving obstacles. Field modulation coefficient is also introduced to weaken the field effect as the obstacle recedes. The real-time algorithm of the velocity dipole field has been devised and experimentally tested on the robot soccer test-bed. The results show the capability of the new real-time collision avoidance strategy and how it can overcome the weaknesses in the conventional potential field method. The new method makes an explicit and proactive action of collision avoidance, unlike the conventional method, which forces the robot merely away from the obstacle aimlessly. The proposed method delivers greater capability with no considerable computational overhead

  • PDF