• Title/Summary/Keyword: Observation of Microstructure

Search Result 379, Processing Time 0.03 seconds

A study of the changes in the strength and microstructure of the zirconia crown surface by the glazing number (Glazing 횟수가 전장지르코니아에 미치는 굴곡강도와 표면 미세구조의 변화)

  • Oh, Seon Mi
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • Purpose: This study aimed to investigate the flexural strength and surface microstructure of the zirconia crown according to the number of glazing zirconia prostheses. Methods: The specimens were made as follows. A specimen without glazing: 1ea, first glazed specimens (group B): 10ea, second glazed specimens (group C): 10ea, third glazed specimens (group D): 10ea. Three-point measuring strength equipment and electron microscopes were used for strength measurement and microstructure observation. As for statistical analysis, one-way ANOVA and t-test (level of significance level=5%) were used to determine the difference in the change in flexural strength according to the number of glazing zirconia prostheses. Results: ANOVA analysis of groups B (1st glazing), C (2nd glazing), and D (3rd glazing) revealed that the change in strength between the groups is statistically significant (p=0.023). The Mann-Whitney test for each group revealed that the difference in flexural strength between groups B and C was not statistically significant (z=-0.302, p=0.762) while that between groups C and D was statistically significant (z=-0.257, p=0.01). Microstructure observation revealed 3 changes in the microstructure of the surface of the glaze powder were observed. Conclusion: According to the number of glazing zirconia prostheses, it was found that the difference in strength between groups was statistically significant, and changes in the microstructure were observed.

Effect of Heterogeneous Microstructure on the Fracture Toughness of Weld Metal (용착금속의 파괴인성에 미치는 불균일 미세조직의 영향)

  • 정현호;김철만;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of microstructure on the fracture toughness of multi pass weld metal has been investigated. The micromechanisms of fracture process are identified by in-situ scanning electron microscopy(SEM) fracture observation using single edge notched specimen. The notches of the in-situ fracture specimens were carefully located such that the ends of the notches were in the as-deposited top bead and the reheated weld metal respectively. The observation of in-situ fracture process for as-deposited top bead indicated that as strains are applied, microcracks are formed at the interfaces between soft proeutectoid ferrite and acicular ferrite under relatively low stress intensity factor. Then, the microcracks propagate easily along the proeutectoid ferrite phase, leading to final fracture. These findings suggest that proeutectoid ferrite plays an important role in reducing the toughness of the weld metal. On the other hand, reheated regions showed that the microcrack initiated at the notch tip grows along the localized shear bands under relatively high stress intensity factor, confirming that reheated area showing momogeneous and fine microstructure would be beneficial to the fracture resistance of weld metal.

  • PDF

Microstructure and Mechanical Properties of Squeeze Cast AZ91 Mg/Al Borate Whisker Composites (용탕단조법으로 제조된 AZ91 Mg/Al Borate 휘스커 복합재료의 미세조직 및 기계적 특성)

  • Kim, Kwang-Chun;Cho, Young-Su;Lee, Sung-Hak;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.537-549
    • /
    • 1996
  • This study aims at investigating the correlation of microstructure and mechanical properties of the AZ91 Mg/Al borate whisker composites fabricated by squeeze csting technique with a variation of applied pressure. Microstructure observation and in-situ fracture tests were conducted on the composites to identify the microfracture process. Detailed microstructural analyses indicated that the grain refinement could be achieved with applied pressure and the little change in volume fraction on reinforcing whiskers could be carried out. It was also found clearly from in-situ observation of crack initiation and propagation that in the composite processed by the lower applied pressure, microcracks were initiated earily at whisker/matrix interfaces, thereby resulting in the drop in strength. In the composite processed by the higher applied pressure, on the other hand, planar slip lines were well developed in the matrix, and then propagated through whiskers without whisker/matrix decohesion. Thus, the effect of the applied pressure on microstructure and mechanical properties can be explained by grain refinement, increased amounts of reinforcements, and improvement of whisker/matrix interfacial strength as the applied pressure in increased.

  • PDF

Studies on the Microstructure of Soybean (Irradiated) During Fermentation (대두(조사)의 발효에 의한 미세구조 변화에 관한 연구)

  • Hur Yun Haeng
    • Journal of environmental and Sanitary engineering
    • /
    • v.1 no.1 s.1
    • /
    • pp.31-40
    • /
    • 1986
  • It was observed by electron microscope (transmission electron microscope, Scanning electron microscope) as a study on microstructure of soybean after r-ray irradiation with the intensity of 5KGY, 7KGY, 10KGY and 15KGY, fermented with the named Bacillus subtilis SCF, which newly separated and identified. According to the progress fermentation, changes of soybean microstructure have been increased, especially irradiated soybeans more increased than non-irradiated them. Observation of microstructure by electron microscope showed that each protein body became more. expanded in the dimension and decomposed, spherosome around the protein body in unit area dispersed and dwindled in the numbers of it. As the fermentation on progress, changes of soybean microstructure were suitable on fermentation period of 7KGY soybean, 48-72hrs fermentation.

  • PDF

Changes of Cheese Components and Texture Characteristics in Cheese Ripening by Fusant Developed by Lactic Acid Bacteria (융합주에 의한 치즈 숙성시 성분변화와 조직 특성)

  • 송재철;김정순;박현정;신환철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1077-1085
    • /
    • 1997
  • This study was carried out to elucidate the utilization of the fusant for shortening the ripening time by making an observation of the microstructure and the profile of component change. In ripening cheese, moisture content of the sample treated with tested strain is not a remarkable difference among the test samples. With an increase of the ripening time, L. helveticus showed the highest increase in protein content, followed by fusant, and then L. bulgaricus. The fat content of all starters was gradually decreased while it was it was rapidly decreased after 7 days. The pH of all starters was gradually decreased when the ripening time increased. The titratable acidity was greatly increased between a 9th day and a 15th day ripening. In investigating the light microscopic microstructure of ripened cheese samples, the sample treated with fusant indicated little difference from the other starters in decomposition of protein and fat components by microbial enzymes. In SEM observation, the structure of all cheese samples was uniform and the rough texture was converted into smooth texture by the interaction of cheese components and the abscission of single bond in casein matrix when the ripening time is increased. The fusant showed similar results in the examination of component change and its microstructure compared with the other starters. Therefore, it was revealed that the fusant can be partially used as a cheese starter instead of conventional starters by replacing them or combining them together with the other starters for shortening the ripening time.

  • PDF

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process (분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

Effects of Microstructure on the Fretting Wear of Inconel 690 Steam Generator Tube

  • Hong, Jin-Ki;Kim, In-Sup;Park, Chi-Yong;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.132-141
    • /
    • 2002
  • The effects of microstructure on fretting wear were investigated in Inconel 690 tube. The microstructure observation indicated that the solution annealing temperature and time affected the grain size of the Inconel 690 tubes. The carbide morphology, along grain boundaries, was mainly affected by thermal treatment time and temperature. The wear test results showed that specimens with larger grain size and with coarse carbides along grain boundaries had better wear resistance. Cracks were found in specimens with carbides along the grain boundary, while few cracks were found in carbide free specimens. It seemed that the carbides on grain boundary assisted crack formation and propagation in carbide containing specimens. On the other hand, the micro-hardness of specimen did not have a major role in fretting wear. It could be inferred from the SEM images of worn surfaces that the main wear mechanism of carbide containing specimen was delamination, while that of carbide free specimen was abrasion.