• Title/Summary/Keyword: Observation Error

Search Result 710, Processing Time 0.028 seconds

A Study on the Strategies of the Positioning of a Satellite on Observed Images by the Astronomical Telescope and the Observation and Initial Orbit Determination of Unidentified Space Objects

  • Choi, Jin;Jo, Jung-Hyun;Choi, Young-Jun;Cho, Gi-In;Kim, Jae-Hyuk;Bae, Young-Ho;Yim, Hong-Suh;Moon, Hong-Kyu;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.333-344
    • /
    • 2011
  • An optical tracking system has advantages for observing geostationary earth orbit (GEO) satellites relatively over other types of observation system. Regular surveying for unidentified space objects with the optical tracking system can be an early warning tool for the safety of five Korean active GEO satellites. Two strategies of positioning on the observed image of Communication, Ocean and Meteorological Satellite 1 are tested and compared. Photometric method has a half root mean square error against streak method. Also eccentricity method for initial orbit determination (IOD) is tested with simulation data and real observation data. Under 10 minutes observation time interval, eccentricity method shows relatively better IOD results than the other time interval. For follow-up observation of unidentified space objects, at least two consecutive observations are needed in 5 minutes to determine orbit for geosynchronous orbit space objects.

Analysis of Seafarers' Behavioral Error on Collision Accidents (충돌사고에 대한 해기사의 행동오류 분석)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.237-242
    • /
    • 2019
  • Behavioral errors of the seafarers are one of the major causes of collisions and are usually corrected through education and training. To correct this behavioral error, the structure in which the behavioral error occurs needs to be identified and analyzed. For this purpose, behavior observation data were obtained through ship maneuvering simulation for collision encounters. The 9-state behavior classification frame proposed by Reason was used for the behavior observation and 50 university students were involved in the experiment. Behavioral analysis used the behavioral model of collision avoidance success and failure, which was developed from the 9-state Left-to-Right Hidden Markov modeling technique. As a result of the experiment, the difference between behaviors of success and failure of collision avoidance was clearly identified, and the linkage between 9-state behaviors, required to prevent collision, was derived.

Design of the Blade-Type Optical Bench for Earth Observation Satellite (지구관측위성의 블레이드형 광학탑재체 지지구조물 설계)

  • Kim, Kyung-Won;Kim, Jin-Hee;Rhee, Ju-Hun;Jin, Ik-Min;Kim, Jong-Wo;Park, Jong-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.88-94
    • /
    • 2005
  • This paper is a study on the blade-type optical bench satisfying stiffness and thermal pointing error requirements for earth observation satellite. According to shape requirements, optical bench is designed. Because it does not satisfy the stiffness requirement, the stiffener is added on the outer/inner area of optical bench. But it does not meet the thermal pointing error requirement. So symmetrical structure is suggested with platform support structure attached on the upper/lower part of platform. Although it has better value than previous case, it still does not meet the thermal pointing error requirement. Based on the results of prior cases, optical bench finally designed, which satisfied both the stiffness and thermal pointing error requirements. Next conclusions follow from this design. It is efficient to increase thickness of platform facesheet, add stiffener and increase blade number to raise stiffness. It is effective to connect component consisting of same material and design optical bench having symmetrical structure to lower thermal pointing error.

A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis (다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구)

  • 김태철;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

Application of Multi-Dimensional Precipitation Models to the Sampling Error Problem (관측오차문제에 대한 다차원 강우모형의 적용)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.441-447
    • /
    • 1997
  • Rainfall observation using rain gage network or satellites includes the sampling error depending on the observation methods or plans. For example, the sampling using rain gages is continuous in time but discontinuous in space, which is nothing but the source of the sampling error. The sampling using satellites is the reverse case that continuous in space and discontinuous in time. The sampling error may be quantified by use of the temporal-spatial characteristics of rainfall and the sampling design. One of recent works on this problem was done by North and Nakamoto (1989), who derived a formulation for estimating the sampling error based on the temporal-spatial rainfall spectrum and the design scheme. The formula enables us to design an optimal rain gage network or a satellite operation plan providing the statistical characteristics of rainfall. In this paper the formula is reviewed and applied for the sampling error problems using several multi-dimensional precipitation models. The results show the limitation of the formulation, which cannot distinguish the model difference in case the model parameters can reproduce similar second order statistics of rainfall. The limitation can be improved by developing a new way to consider the higher order statistics, and eventually the probability density function (PDF) of rainfall.

  • PDF

Spacecraft Attitude Determination Study using Predictive Filter (Predictive Filter를 이용한 인공위성 자세결정 연구)

  • Choi , Yoon-Hyuk;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.48-56
    • /
    • 2005
  • Predictive filter theory proposed recently can be characterized by inherent advantages of estimating modelling error and overcoming the disadvantage of the Kalman filter theory. A one-step ahead error is minimized to produce optimized filter performance in the form of the predictive filter. The main advantage of this filter lies in the ability to estimate both state vector and system model error. In this paper, attitude estimation results based upon the predictive filter theory is addressed. Mathematical formulation for estimating bias signal is peformed by using the predictive filter theory, and attitude estimation based upon vector observation is presented. From the results of this study, the potential applicability of the predictive filter is highlighted.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Monitoring QZSS CLAS-based VRS-RTK Positioning Performance

  • Lim, Cheolsoon;Lee, Yebin;Cha, Yunho;Park, Byungwoon;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.251-261
    • /
    • 2022
  • The Centimeter Level Augmentation Service (CLAS) is the Precise Point Positioning (PPP) - Real Time Kinematic (RTK) correction service utilizing the Quasi-Zenith Satellite System (QZSS) L6 (1278.65 MHz) signal to broadcast the Global Navigation Satellite System (GNSS) error corrections. Compact State-Space Representation (CSSR) corrections for mitigating GNSS measurement error sources such as satellite orbit, clock, code and phase biases, tropospheric error, ionospheric error are estimated from the ground segment of QZSS CLAS using the code and carrier-phase measurements collected in the Japan's GNSS Earth Observation Network (GEONET). Since the CLAS service begun on November 1, 2018, users with dedicated receivers can perform cm-level precise positioning using CSSR corrections. In this paper, CLAS-based VRS-RTK performance evaluation was performed using Global Positioning System (GPS) observables collected from the refence station, TSK2, located in Japan. As a result of performing GPS-only RTK positioning using the open-source software CLASLIB and RTKLIB, it took about 15 minutes to resolve the carrier-phase ambiguities, and the RTK fix rate was only about 41%. Also, the Root Mean Squares (RMS) values of position errors (fixed only) are about 4cm horizontally and 7 cm vertically.

Meta-Analysis on the Effects of Action Observation Training on Stroke Patients' Walking; Focused on Domestic Research (뇌졸중 환자의 동작관찰훈련이 보행에 미치는 효과에 대한 메타분석; 국내연구를 중심으로)

  • Lee, Jeongwoo;Ko, Un;Doo, Yeongtaek
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.119-130
    • /
    • 2019
  • Purpose : The purpose of this study was to investigate the meta-analysis on the effects of action observation training on stroke patients' walking. Methods : Domestic databases (DBpia, KISS, NDSL, and RISS) were searched for studies that conducted randomized controlled trials (RCTs) associated with action observation training in adults after stroke. The search outcomes were items associated with the walking function. The 18 studies that were included in the study were analyzed using R meta-analysis. A random-effect model was used for the analysis of the effect size because of the significant heterogeneity among the studies. Sub-group and meta-regression analysis were also used. Egger's regression test was conducted to analyze the publishing bias. Cumulative meta-analysis and sensitivity analysis were also done to analyze a data error. Results : The mean effect size was 2.77. The sub-group analysis showed a statistical difference in the number of training sessions per week. No statistically significant difference was found in the meta-regression analysis. Publishing bias was found in the data, but the results of the trim-and-fill method showed that such bias did not affect the obtained data. Also, the cumulative meta-analysis and sensitivity analysis showed no data errors. Conclusion : The meta-analysis of the studies that conducted randomized clinical trials revealed that action observation training effectively improved walking of the chronic stroke patients.

Improvement and Observation of Condensation Particle Counter in Atmospheric Research Aircraft NARA for Condensation Particle Research in Korea (한반도 상공의 응결핵 연구를 위한 기상항공기 나라호의 응결핵입자계수기 개선 및 관측)

  • Jung, Woonseon;Ku, Jung Mo;Kim, Min-Seong;Shin, Hye-min;Ko, A-Reum;Chang, Ki-Ho;Cha, Joo Wan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.803-813
    • /
    • 2022
  • In this study, we improved the water-based condensation particle counter in Atmospheric Research Aircraft NARA and investigated the condensation particle number concentration over the Korean peninsula. Pump and set point information were changed to improve the instrument used by aircraft for observation. Ground-based observational result showed that the error between two instruments, which are water-based condensation particle counter and butanol-based condensation particle counter, was 4.7%. Aerial observational result revealed that the number concentration before improvement indicate large variation with unstable condition, whereas the number concentration after improvement indicate a reasonable variation. After improvement, the number concentration was 706±499 particle/cm3 in the West Sea and 257±80 particle/cm3 in Gangwon-do, and these are similar to the concentration range reported in previous studies. Notably, this is the first attempt to use aerial observation with water-based condensation particle counter to investigate condensation particle number concentration.