• Title/Summary/Keyword: Objective weighting

Search Result 245, Processing Time 0.026 seconds

The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique

  • Ongkunaruk, Pornthipa
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.126-132
    • /
    • 2008
  • The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are $N=\{1,2,{\cdots},n\}$ which is a set of item indices and $L=\{s1,s2,{\cdots},sn\}$ be a set of item sizes sj, where $0<sj{\leq}1$, ${\forall}j{\in}N$. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.

A method of calculating the number of fishing operation days for fishery compensation using fishing vessel trajectory data (어선 항적데이터를 활용한 어업손실보상을 위한 조업일수 산출 방법)

  • KIM, Kwang-Il;KIM, Keun-Huyng;YOO, Sang-Lok;KIM, Seok-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.334-341
    • /
    • 2021
  • The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

A Study on Weighting Filter Considering Directivity in High Density Salt and Pepper Noise (고밀도 Salt and Pepper 잡음 환경에서 방향성을 고려한 가중치 필터에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.925-928
    • /
    • 2015
  • The application fields of the image processing get gradually diversified as the society develops to the highly leveled digital information era and is highlighted as an important field. Especially, many studies on image restoration, a key technology in the image processing have been carried out. This paper proposed a filter which applies the directivity and spatial weighting based on the degraded pixels in order to restore the image degraded in the high density salt and pepper noise environment. In addition, this paper compared this filter with the current methods for objective judgment using PSNR(peak signal to noise ratio) as a criterion of judgment.

  • PDF

Shape Design of Heat Transfer Surfaces with Angled Ribs Using Numerical Optimization Techniques (경사진 사각리브가 부착된 열전달면의 수치최적화기법을 이용한 형상설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1051-1057
    • /
    • 2004
  • A numerical optimization procedure for the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer is presented. The response surface method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analyses of flow and heat transfer. SST turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show reasonable agreements with experimental data. The pitch-to-height ratio of the rib and rib height-to-channel height ratio are set to be 9.0 and 0.1, respectively, and width-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in the range from 0.0 to 0.1 of weighting factor.

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

Occupant Characteristics Analysis based on Integrative IEQ Weighting Factor in Residential Buildings - Based on Occupant Survey of Residential Building in Chungbuk Province (주거건물에서의 통합 실내환경평가 가중치 분석을 통한 거주자 특성분석 - 충북지역 주거건물 거주자 설문조사를 바탕으로)

  • Yoon, Sung-Hoon;Yun, Hee-Jin
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.87-92
    • /
    • 2016
  • Purpose: The objective of this research is to investigate and analyze the relationship between physical residential conditions and occupants' responses in apartment buildings by POE(Post-Occupancy Evaluation). The analysis results from this research will help to identify the indoor residential problems and find design solutions for improving overall residential indoor residential environment. Method: The occupant survey was conducted at four different apartment complex area at Cheongju City, Chungbuk Province, Korea. Combination of unbalanced indoor environmental conditions in residential building had difference of occupants' responses according to occupants' characteristics, such as gender, age, and so on. The survey collected data regarding the occupants' EQ(Environmental Quality) priorities to determine the weight of each environmental-quality factor (lighting, acoustic, thermal and indoor air quality). A paired comparison method was used to determine the weight by comparing the relative importance of the two factors based on occupant's survey response. Result: The output from this research is useful to understand the residential environment, occupants' satisfaction, preference, and identifies the current residential problems and finds an architectural solution in apartment buildings.

Calibration of Fatigue Performance Prediction Model for Flexible Pavements Using Field Data (현장 데이터를 이용한 연성포장용 피로 공용성 예측모델 검정)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.234-241
    • /
    • 2012
  • The main objective of this research is to calibrate the performance prediction models for the growth of fatigue cracking in multi-layered asphalt concrete pavement systems. However, the calibration factors are dependent upon the prediction model, testing method, and the laboratory loading history. A detailed study on the field data has revealed that the performance of flexible pavements is affected by both the traffic loading and the environmental cycling which is related to the age of the pavements. Thus, a composite indicator was developed in this study which utilizes both the traffic and the age information with appropriate weighting factors. Using the proposed fatigue performance model the calibration factors were also estimated through the comparisons between the field performances on fatigue cracking and the laboratory-based fatigue life.

Weighting of Stroke Pattern Identification Using an AHP (AHP 기법을 이용한 중풍 변증지표의 가중치 설정)

  • Kang, Byoung-Kab;Kim, So-Yeon;Lee, Jung-Sup;Kim, No-Soo;Ko, Mi-Mi;Kwon, Se-Hyug;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.149-153
    • /
    • 2011
  • In this study, we structuralized the diagnostic indices used for pattern identification (PI) of stroke, and suggested an AHP method to obtain the weights of PI indices. AHP of the subjects under consistency ratio 0.1 showed that the critical indices for stroke PI consists of 9 for Qi-deficiency, 13 for Phlegm/dampness, 7 for blood stagnation, 12 for Yin-deficiency and 16 for Fire/heat. Furthermore, AHP analysis rendered the weights of indices of each PI that will be useful for oriental medical experts to perform objective PI.

RC structural system control subjected to earthquakes and TMD

  • Jenchung Shao;M. Nasir Noor;P. Ken;Chuho Chang;R. Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.213-223
    • /
    • 2024
  • This paper proposes a composite design of fuzzy adaptive control scheme based on TMD RC structural system and the gain of two-dimensional fuzzy control is controlled by parameters. Monitoring and learning in LMI then produces performance indicators with a weighting matrix as a function of cost. It allows to control the trade-off between the two efficiencies by adjusting the appropriate weighting matrix. The two-dimensional Boost control model is equivalent to the LMI-constrained multi-objective optimization problem under dual performance criteria. By using the proposed intelligent control model, the fuzzy nonlinear criterion is satisfied. Therefore, the data connection can be further extended. Evaluation of controller performance the proposed controller is compared with other control techniques. This ensures good performance of the control routines used for position and trajectory control in the presence of model uncertainties and external influences. Quantitative verification of the effectiveness of monitoring and control. The purpose of this article is to ensure access to adequate, safe and affordable housing and basic services. Therefore, it is assumed that this goal will be achieved in the near future through the continuous development of artificial intelligence and control theory.