• Title/Summary/Keyword: Object-based model

Search Result 2,196, Processing Time 0.034 seconds

Formalization of Object-Oriented Dynamic Modeling Technique (객체지향 동적 모델링 기법의 정형화)

  • Kim, Jin-Soo;Kim, Jeong-A;Lee, Gyeong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.4
    • /
    • pp.1013-1024
    • /
    • 1997
  • In the traditional object modeling methodologies, the object model can be said as formal since it has been based on rich semantic model. But almost of all methodolgies lack in formality the dyamic model and modeling process. Dynamic model cannot represent exctly the timing constraints and the interaction among the objects, which are very important features in real-time and multimedia system. In this paper, we formalize the synamic moedl and modeling proxess based on object behavior and state. This model defines the object state space using the concepts in algebra stucture and defines the object behavior func-tion. Also this model can formalize object kifecycle and conurrency among the objects usint the temporal logiction. Also this model can frlmaize object lifecycle and conurrency among the objects using the tempral logic and behavior founction. We apply firing rules to behacior function for modeling the dependency of interaction among the objescts.

  • PDF

Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials (다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 )

  • Heejun Kwon;Bohee Lee;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

Stereo Images-Based Real-time Object Tracking Using Active Feature Model (능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적)

  • Park, Min-Gyu;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.109-116
    • /
    • 2009
  • In this thesis, an object tracking method based on the active feature model and the optical flow in stereo images is proposed. We acquired the translation information of object of interest and the features of object by utilizing the geometric information and depth of stereo images. Tracking performance is improved for the occlude object with this information by predicting the movement information of features of the occlude object. Rigid and non-rigid objects are experimented. From the result of experiment, the OOI can be real-time tracked from complicate back ground. Besides, we got the improved result of object tracking in any occlusion state, no matter what it is rigid or non-rigid object.

2D-3D Pose Estimation using Multi-view Object Co-segmentation (다시점 객체 공분할을 이용한 2D-3D 물체 자세 추정)

  • Kim, Seong-heum;Bok, Yunsu;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • We present a region-based approach for accurate pose estimation of small mechanical components. Our algorithm consists of two key phases: Multi-view object co-segmentation and pose estimation. In the first phase, we explain an automatic method to extract binary masks of a target object captured from multiple viewpoints. For initialization, we assume the target object is bounded by the convex volume of interest defined by a few user inputs. The co-segmented target object shares the same geometric representation in space, and has distinctive color models from those of the backgrounds. In the second phase, we retrieve a 3D model instance with correct upright orientation, and estimate a relative pose of the object observed from images. Our energy function, combining region and boundary terms for the proposed measures, maximizes the overlapping regions and boundaries between the multi-view co-segmentations and projected masks of the reference model. Based on high-quality co-segmentations consistent across all different viewpoints, our final results are accurate model indices and pose parameters of the extracted object. We demonstrate the effectiveness of the proposed method using various examples.

Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset (다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법)

  • Lee, Jun Ha;Won, Hong-In;Kim, Byeong Hak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

Java Object Modeling Using EER Model and the Implementation of Object Parser (EER 모델을 이용한 Java Object 모델링과 Object 파서의 구현)

  • 김경식;김창화
    • The Journal of Information Technology and Database
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1999
  • The modeling components in the object-oriented paradigm are based on the object, not the structured function or procedure. That is, in the past, when one wanted to solve problems, he would describe the solution procedure. However, the object-oriented paradigm includes the concepts that solve problems through interaction between objects. The object-oriented model is constructed by describing the relationship between object to represent the real world. As in object-oriented model the relationships between objects increase, the control of objects caused by their insertions, deletions, and modifications comes to be very complex and difficult. Because the loss of the referential integrity happens and the object reusability is reduced. For these reasons, the necessity of the control of objects and the visualization of the relationships between them is required. In order that we design a database necessary to implement Object Browser that has functionalities to visualize Java objects and to perform the query processing in Java object modeling, in this paper we show the processes for EER modeling on Java object and its transformation into relational database schema. In addition we implement Java Object Parser that parses Java object and inserts the parsed results into the implemented database.

  • PDF

The Design of the Sensory-Motor System for Real Time Object Tracking (이동 물체를 실시간으로 추적하기 위한 Sensory-Motor System 설계)

  • Lee, Sang-Hee;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2780-2782
    • /
    • 2002
  • In this paper Valentine Braitenberg structure based sensory motor model for object tracking control system was proposed. Conventional model based control schemes are require highly non-linear mathematical models, which require long computational time to solve complex high order equations. Contrast to conventional models proposed system simply link signal data from camera directly to the inputs of neural network, and outputs of network are directly fed into input of motor driver of camera. With simple structure of sensory motor model, real time tracking control system for dynamic object was realized successfully, and the implementation of sensory motor model can overcome the limitation of model-based control schemes.

  • PDF

Livestock Anti-theft System Using Morphological Feature-based Model (형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF