• Title/Summary/Keyword: Object-Z

Search Result 190, Processing Time 0.022 seconds

STAR FORMING ACTIVITY OF CLUSTER GALAXIES AT z~1

  • KIM, JAE-WOO;IM, MYUNGSHIN;LEE, SEONG-KOOK;HYUN, MINHEE
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.503-505
    • /
    • 2015
  • The galaxy cluster is an important object for investigating the large scale structure and evolution of galaxies. Recent wide and deep near-IR surveys provide an opportunity to search for galaxy clusters in the high redshift universe. We have identified candidate clusters of 0.8< z <1.2 from the $25deg^2$ SA22 field using an optical-near-IR dataset from merged UKIDSS DXS, IMS and CFHTLS catalogs. Using these candidates, we investigate the star forming activity of member galaxies. Consequently, at z ~1, the star forming activity of cluster galaxies is not distinguishable from those of field galaxies, which is different from members in local clusters. This means the environmental effect becomes more important for $M_{\ast}>10^{10}M_{\odot}$ galaxies at z <1.

Variability Analysis of HBC722 using Lomb-Scargle Periodogram

  • Baek, Giseon;Pak, Soojong;Green, Joel D.;Jeon, Yiseul;Choi, Changsu;Lee, Jeong-Eun;Im, Myungshin;Meschiari, Stefano
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2013
  • We present preliminary results of the photometric variability analysis in SDSS r, i and z bands for a newly confirmed FU Orionis-type object, HBC 722. We observed HBC 722 from 2011 April to 2012 November, with Camera for Quasars in Early uNiverse (CQUEAN) attached to the 2.1m Otto Struve telescope at McDonald Observatory, USA. The rapid cadence monitoring observations (minute timescale) were conducted in chosen photometric nights during observation campaigns to get adequate number of samples for short term period analysis. As this object is in active state, temperature at the inner disk/stellar surface can be characterized by the colors between r, i and z bands. Also, It is theorized that a sudden cataclysmic accretion associated with FU Orionis-type outburst can give rise to detectable "hot spots" on the central star and rotational asymmetries in the disk instability region. Thus the periodic variabilities of three bands would trace the stellar rotation or Keplerian rotation at the instability region of the inner accretion disk. Additionally, the range of instabilities could be estimated on the assumption of a temperature distribution for the HBC 722 disk. This analysis can provide a clue for understanding enhanced disk accretion of Class II young stellar object.

  • PDF

Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation (자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응)

  • Jungwan Woo;Jaeyeul Kim;Sunghoon Im
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

GALAXY SED FITTING FROM AKARI TO HERSCHEL: 0.7 < z < 4 SUB-MILLIMETER LYMAN BREAK GALAXIES IN INFRARED

  • Burgarella, D.;The PEP-HerMES-COSMOS team, The PEP-HerMES-COSMOS team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.311-316
    • /
    • 2012
  • Lyman break Galaxies are galaxies selected in the rest-frame ultraviolet. But, one important and missing information for these Lyman break galaxies is the amount of dust attenuation. This is crucial to estimate the total star formation rate of this class of objects and, ultimately, the cosmic star formation density. AKARI, Spitzer and Herschel are therefore the major facilities that could provide us with this information. As part of the Herschel Multi-tiered Extragalactic Survey, we have began investigating the rest-frame far-infrared properties of a sample of more than 4,800 Lyman Break Galaxies in the GOODS-North fiels. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z <1.6 and one object at z = 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. We have analysed their UV-to-FIR spectral energy distributions using the code cigale to estimate their physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. They also appear to be located in a triangle-shaped region in the $A_{FUV}$ vs. $logL_{FUV}$ diagram limited by $A_{FUV}$ = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. In a second step, we move to the larger COSMOS field where we have been able to detect 80 Lyman break galaxies (out of ~ 15,600) in the far infrared. They form the largest sample of Lyman break galaxies at z > 2.5 detected in the far-infrared. We tentatively name them Submillimeter Lyman break galaxies (S-LBGs).

Design of ultraprecision hi-directional actuator for nm using a permanent magnet and electromagnet (영구 자석과 전자석의 상호작용을 이용한 초정밀 양방향 구동기 설계)

  • Kim Ki-Hyun;Gweon Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.147-154
    • /
    • 2005
  • A precision hi-directional actuator for a high precision leveling system with $Z{\Theta}_x{\Theta}_y$ motions is proposed and designed in this paper. The actuator is composed of a force generation structure, a guide mechanism, and a symmetric structure. At first, its driving force is generated by a change of flux in air gaps by permanent and changeable flux. The permanent flux is generated by a permanent magnet. The changeable flux is created by variable current flowing through coil. The combination of permanent and changeable flux makes various flux densities in air gaps between moving part and fixed yokes. And then, the difference between flux densities in lower and upper gaps creates forces fur the $bi-direction({\pm}z)$ motion. The guide mechanism of this actuator is composed of two circular plates and one shaft. Reducing motions generated by forces except z-motion, these circular plates endow the actuator with high stiffness for fast settling time. And the function of the shaft is to transfer motion to an object. At last, total body has a symmetric structure to be stable on thermal error. The actuator is designed by MAXWELL 2D and ProMECHANICA. The designed actuator is evaluated by 8nm laser doppler vibrometer, dynamic signal analyzer, and simple PID controller.

A Study on the Optimal Magnet for ECR (ECR 용 최적 마그네트에 관한 연구)

  • Kim, Y.T.;Kim, Y.J.;Kim, K.S.;Lee, Y.J.;Son, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

Constraining the ICL formation mechanism using fossil clusters at z~0.47

  • Yoo, Jaewon;Ko, Jongwan;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.33.3-34
    • /
    • 2018
  • Galaxy clusters contain a diffuse component of stars outside galaxies, that is observed as intracluster light (ICL). Since the ICL abundance increases during various dynamical exchanges of galaxies, the amount of ICL can act as a measurement tool for the dynamical stage of galaxy clusters. There are two prominent ICL formation scenarios; one is related to the brightest cluster galaxy (BCG) major mergers, and the other to the tidal stripping of galaxies. However, it is still under debate as to which is the main ICL formation mechanism. In this study we improve on earlier observational constraints of the ICL origin, by investigating it in a massive fossil cluster at z~0.47. Fossil clusters are believed to be dynamically matured galaxy clusters which have dominant BCGs. Recent simulation studies imply that, BCGs have assembled 85~90% of their mass by z~0.4 (e.g., Contini et al. 2014). Thus our target is an optimal test bed to examine the BCG-related scenario. Our deep images and Multi-Object Spectroscopic observations of the target fossil cluster (Gemini North 2018A) allow us to extract the ICL distribution, ICL color map and ICL fraction to cluster light. We will present a possible constraint of the ICL origin and discuss its connection to the BCG and the host galaxy cluster.

  • PDF

The Roughing Tool-Path Generation of Die-Cavity Shape Using the Drill (Drill을 이용한 Die-Cavity 형상의 황삭 가공 경로 생성)

  • Lim, P.;Lee, H. G;Yang, G. E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.398-401
    • /
    • 2001
  • This paper presents rough cutting pat고 drilling. This method has differences from conventional method which uses boundary curve by intersecting object to machine and each cutting plane. Die-cavity shape is drilled in z-map, we select various tool and remove much material in the short time. as a result, this method raise productivity. The major challenges in die-cavity pocketing include : 1)finding an inscribed circle for removing material of unmachined regions, 2) selecting optimal tool and efficiently arranging tool, 3) generating offset surface of shape, 4) determining machined width according to the selected tool, 5) detecting and removing unmachined regions, and 6) linking PJE(path-joining element). Conventional machining method calling contour-map is compared with drilling method using Z-map, for finding efficiency in the view of productivity.

  • PDF

Modeling of 3D object shape based on Superquadrics and Z-Buffer Algorithm

  • Kim, Dae-Hyun;D.H. Hyeon;Lee, S.H.;Park, J.S.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1088-1091
    • /
    • 2000
  • Superquadrics can represent various and complex 3D objects with only some parameters(size, position, deformation etc.). So if we use both superquadrics and deformed superquadrics, we can also represent more realistic 3D objects which are existed in real world. In this paper we use the z-buffer algorithm and stencil buffer together because this is very useful when the superquadric primitives are combined. The fundamental ideas are illustrated with a number of tables and figures.

  • PDF

ON SUBCLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH STRUVE FUNCTIONS

  • Frasin, B.A.;Al-Hawary, Tariq;Yousef, Feras;Aldawish, I.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • The main object of this paper is to provide necessary and sufficient conditions for the generalized Struve functions of first kind to be in the classes 𝒮(k, λ) and 𝒞(k, λ). Furthermore, we give conditions for the integral operator 𝓛(m, c, z) = ∫z0(2 - up(t))dt to be in the class 𝒞*(k, λ). Several corollaries and consequences of the main results are also considered.