• 제목/요약/키워드: Object technology

검색결과 3,903건 처리시간 0.032초

유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상 (Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects)

  • 허지성;박지훈
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.

Video Object Segmentation with Weakly Temporal Information

  • Zhang, Yikun;Yao, Rui;Jiang, Qingnan;Zhang, Changbin;Wang, Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1434-1449
    • /
    • 2019
  • Video object segmentation is a significant task in computer vision, but its performance is not very satisfactory. A method of video object segmentation using weakly temporal information is presented in this paper. Motivated by the phenomenon in reality that the motion of the object is a continuous and smooth process and the appearance of the object does not change much between adjacent frames in the video sequences, we use a feed-forward architecture with motion estimation to predict the mask of the current frame. We extend an additional mask channel for the previous frame segmentation result. The mask of the previous frame is treated as the input of the expanded channel after processing, and then we extract the temporal feature of the object and fuse it with other feature maps to generate the final mask. In addition, we introduce multi-mask guidance to improve the stability of the model. Moreover, we enhance segmentation performance by further training with the masks already obtained. Experiments show that our method achieves competitive results on DAVIS-2016 on single object segmentation compared to some state-of-the-art algorithms.

The Study of Strategies for acquisition of moving object location

  • Min, Kyoung-Wook;Jang, In-Seung;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.111-116
    • /
    • 2002
  • The types of service using location Information are being various and extending it's domain as wireless internet technology is developing and it's application part is widespread, so it is prospected that LBS (Location-Based Services) will be killer application in wireless internet services. This location information is basic and high value-added information, and this information services make prior GIS (Geography Information System) to be useful to anybody. The acquisition of this location information from moving object is very important part for these LBS. After this, when LBS is familiar to everybody, we can predict that LBS system load is so heavy for the acquisition of so many subscribers and vehicles. Moving object database (MODB) system manages objects like subscribes and vehicles that are moving and have telecommunication terminal checked one's location. MODB is consists of 4 part, moving object location acquisition part, moving object location storage part, moving object query processing part, and moving object application p art. In this MODB system, acquisition of moving object location part must provide guarantee location information as well as reduce telecommunication overhead. In this paper, we study of problems in acquisition a huge number o f moving objects location and design some acquisition strategies to reduce telecommunication overhead. And after implementation these strategies, we estimate performance of this system and quality of information.

  • PDF

A threshold decision of the object image by using the smart tag

  • Im, Chang-Jun;Kim, Jin-Young;Joung, Kwan-Young;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2368-2372
    • /
    • 2005
  • We proposed a novel method for object recognition using the Smart tag system in the previous research. We identified the object easily, but could not assure the object pose, because the threshold problem was not solved. So we propose a new method to solve this threshold problem. This method uses a smart tag to decide the threshold by recording color information of the image when the object feature is extracted. This method records the original of the object color information at the smart tag first. And then it records the object image information, the circumstance image information and the sensors information continuously when the object feature is extracted through the experiments. Finally, it estimates the current threshold by recorded information. This method can be applied the threshold to each objects. And it can solve the difficult threshold decision problem easily. To approve the possibility of our method, we implemented our approach by using easy and simple techniques as possible.

  • PDF

Design and implementation of a Moving Object Engine

  • Lee Hyun Ah;Kim Jin Suk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.272-275
    • /
    • 2004
  • Recently, the services using position information of moving objects is embossed. Theses services needs the moving objects databases to manage moving object data with efficiency. To build the moving object databases, we must develop the moving object engine to mange, store, and search the spatio temporal data of moving object. The moving object engine has to support query syntax to search data that suitable for user need like LBS, Telematics, ITS, vehicle management system. In this paper, we design and implement the moving object engine to support service with moving object data. The moving object engine is able to support system environment that users are able to get the moving object data easily even they don't know complex data structure.

  • PDF

깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법 (Active Shape Model-based Object Tracking using Depth Sensor)

  • 정훈조;이동은
    • 디지털산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.

비디오 Object Detection에서의 연산량 감소를 위한 방법 (Method for reducing computational amount in video object detection)

  • 김도영;강인영;김연수;최진원;박구만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.723-726
    • /
    • 2021
  • 현재 단일 이미지에서 Object Detection 성능은 매우 좋은 편이다. 하지만 동영상에서는 처리 속도가 너무 느리고 임베디드 시스템에서는 real-time이 힘든 상황이다. 연구 논문에서는 하이엔드 GPU에서 다른 기능 없이 YOLO만 구동했을 때 real-time이 가능하다고 하지만 실제 사용자들은 상대적으로 낮은 사양의 GPU를 사용하거나 CPU를 사용하기 때문에 일반적으로는 자연스러운 real-time을 하기가 힘들다. 본 논문에서는 이러한 제한점을 해결하고자 계산량이 많은 Object Detection model 사용을 줄이는 방안은 제시하였다. 현재 Video영상에서 Object Detection을 수행할 때 매 frame마다 YOLO모델을 구동하는 것에서 YOLO 사용을 줄임으로써 계산 효율을 높였다. 본 논문의 알고리즘은 카메라가 움직이거나 배경이 바뀌는 상황에서도 사용이 가능하다. 속도는 최소2배에서 ~10배이상까지 개선되었다.

산업용 지능형 로봇의 물체 인식 방법 (Object Recognition Method for Industrial Intelligent Robot)

  • 김계경;강상승;김중배;이재연;도현민;최태용;경진호
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.901-908
    • /
    • 2013
  • The introduction of industrial intelligent robot using vision sensor has been interested in automated factory. 2D and 3D vision sensors have used to recognize object and to estimate object pose, which is for packaging parts onto a complete whole. But it is not trivial task due to illumination and various types of objects. Object image has distorted due to illumination that has caused low reliability in recognition. In this paper, recognition method of complex shape object has been proposed. An accurate object region has detected from combined binary image, which has achieved using DoG filter and local adaptive binarization. The object has recognized using neural network, which is trained with sub-divided object class according to object type and rotation angle. Predefined shape model of object and maximal slope have used to estimate the pose of object. The performance has evaluated on ETRI database and recognition rate of 96% has obtained.

증강현실 서비스를 위한 Camshift와 SURF를 개선한 객체 검출 및 추적 구현 (Implementation of Improved Object Detection and Tracking based on Camshift and SURF for Augmented Reality Service)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.97-102
    • /
    • 2017
  • Object detection and tracking have become one of the most active research areas in the past few years, and play an important role in computer vision applications over our daily life. Many tracking techniques are proposed, and Camshift is an effective algorithm for real time dynamic object tracking, which uses only color features, so that the algorithm is sensitive to illumination and some other environmental elements. This paper presents and implements an effective moving object detection and tracking to reduce the influence of illumination interference, which improve the performance of tracking under similar color background. The implemented prototype system recognizes object using invariant features, and reduces the dimension of feature descriptor to rectify the problems. The experimental result shows that that the system is superior to the existing methods in processing time, and maintains better problem ratios in various environments.

  • PDF

Super Resolution을 통한 건설현장 CCTV 고해상도 복원 및 Object Detection 성능 향상 (Restoring CCTV Data and Improving Object Detection Performance in Construction Sites by Super Resolution Based on Deep Learning)

  • 김국빈;서효정;김하림;유위성;조훈희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.251-252
    • /
    • 2023
  • As technology improves with the 4th industrial revolution, smart construction is becoming a key part of safety management in the architecture and civil engineering. By using object detection technology with CCTV data, construction sites can be managed efficiently. In this study, super resolution technology based on deep learning is proposed to improve the accuracy of object detection in construction sites. As the resolution of a train set data and test set data get higher, the accuracy of object detection model gets better. Therefore, according to the scale of construction sites, different object detection models can be considered.

  • PDF