• 제목/요약/키워드: Object detection algorithm

검색결과 941건 처리시간 0.025초

증강현실 서비스를 위한 Camshift와 SURF를 개선한 객체 검출 및 추적 구현 (Implementation of Improved Object Detection and Tracking based on Camshift and SURF for Augmented Reality Service)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.97-102
    • /
    • 2017
  • Object detection and tracking have become one of the most active research areas in the past few years, and play an important role in computer vision applications over our daily life. Many tracking techniques are proposed, and Camshift is an effective algorithm for real time dynamic object tracking, which uses only color features, so that the algorithm is sensitive to illumination and some other environmental elements. This paper presents and implements an effective moving object detection and tracking to reduce the influence of illumination interference, which improve the performance of tracking under similar color background. The implemented prototype system recognizes object using invariant features, and reduces the dimension of feature descriptor to rectify the problems. The experimental result shows that that the system is superior to the existing methods in processing time, and maintains better problem ratios in various environments.

  • PDF

Viola & Jones 얼굴 검출 알고리즘의 성능 분석 (Performance Analysis of Viola & Jones Face Detection Algorithm)

  • 오정수;허훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.477-480
    • /
    • 2018
  • Viola와 Jones의 객체 검출 알고리즘은 대표적인 얼굴 검출 알고리즘이다. 알고리즘은 얼굴 표현을 위해 하르-유사 특징들을 사용하고 분류를 위해 약분류기들의 선형 조합인 강분류기들로 구성된 cascade-Adaboost 알고리즘을 사용하고 있다. 이 알고리즘은 구현을 위해 몇 개의 변수 설정을 요구하고 설정된 값들이 알고리즘 성능에 영향을 준다. 본 논문은 알고리즘에 설정되는 변수에 따른 얼굴 검출 성능을 분석한다.

  • PDF

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

Deep-Learning Based Real-time Fire Detection Using Object Tracking Algorithm

  • Park, Jonghyuk;Park, Dohyun;Hyun, Donghwan;Na, Youmin;Lee, Soo-Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2022
  • 본 논문에서는 실시간 객체 탐지(Real-time Object Detection)가 가능한 YOLOv4 모델과 DeepSORT 알고리즘을 활용한 객체 추적(Object Tracking) 기술을 활용하여 CCTV 영상 이미지 기반의 화재 탐지 시스템을 제안한다. 화재 탐지 모델은 10800장의 학습용 데이터로부터 학습되었으며 1000장의 별도 테스트 셋을 통해 검증되었다. 이후 DeepSORT 알고리즘을 통해 탐지된 화재 영역을 추적하여 단일 이미지 내의 화재 탐지율과 영상 내에서의 화재 탐지 유지성능을 증가시켰다. 영상 내의 한 프레임 혹은 단일 이미지에 대한 화재 탐지 속도는 장당 0.1초 이내로 실시간 탐지가 가능함을 확인하였으며 본 논문의 AI 화재 탐지 시스템은 기존의 화재 사고 탐지 시스템 보다 안정적이고 빠른 성능을 지니고 있어 화재현장에 적용 시 화재를 조기 발견하여 빠른 대처 및 발화단계에서의 진화가 가능할 것으로 예상된다.

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제12권3호
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석 (Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

비젼 시스템을 이용한 2-D 원형 물체 추적 알고리즘의 비교에 관한 연구 (A Study on the Comparison of 2-D Circular Object Tracking Algorithm Using Vision System)

  • 한규범;김정훈;백윤수
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, the algorithms which can track the two dimensional moving circular object using simple vision system are described. In order to track the moving object, the process of finding the object feature points - such as centroid of the object, corner points, area - is indispensable. With the assumption of two-dimensional circular moving object, the centroid of the circular object is computed from three points on the object circumference. Different kinds of algorithms for computing three edge points - simple x directional detection method, stick method. T-shape method are suggested. Through the computer simulation and experiments, three algorithms are compared from the viewpoint of detection accuracy and computational time efficiency.

  • PDF

A study of duck detection using deep neural network based on RetinaNet model in smart farming

  • Jeyoung Lee;Hochul Kang
    • Journal of Animal Science and Technology
    • /
    • 제66권4호
    • /
    • pp.846-858
    • /
    • 2024
  • In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or dies, it will adversely affect the growing environment. In order to prevent the foregoing, it was necessary to continuously manage the cage for duck growth. This study proposes a method using an object detection algorithm to improve the foregoing. Object detection refers to the work to perform classification and localization of all objects present in the image when an input image is given. To use an object detection algorithm in a duck cage, data to be used for learning should be made and the data should be augmented to secure enough data to learn from. In addition, the time required for object detection and the accuracy of object detection are important. The study collected, processed, and augmented image data for a total of two years in 2021 and 2022 from the duck cage. Based on the objects that must be detected, the data collected as such were divided at a ratio of 9 : 1, and learning and verification were performed. The final results were visually confirmed using images different from the images used for learning. The proposed method is expected to be used for minimizing human resources in the growing process in duck cages and making the duck cages into smart farms.

무인 항공기를 이용한 밀집영역 자동차 탐지 (Vehicle Detection in Dense Area Using UAV Aerial Images)

  • 서창진
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.693-698
    • /
    • 2018
  • 본 논문은 최근 물체탐지 분야에서 실시간 물체 탐지 알고리즘으로 주목을 받고 있는 YOLOv2(You Only Look Once) 알고리즘을 이용하여 밀집 영역에 주차되어 있는 자동차 탐지 방법을 제안한다. YOLO의 컨볼루션 네트워크는 전체 이미지에서 한 번의 평가를 통해서 직접적으로 경계박스들을 예측하고 각 클래스의 확률을 계산하고 물체 탐지 과정이 단일 네트워크이기 때문에 탐지 성능이 최적화 되며 빠르다는 장점을 가지고 있다. 기존의 슬라이딩 윈도우 접근법과 R-CNN 계열의 탐지 방법은 region proposal 방법을 사용하여 이미지 안에 가능성이 많은 경계박스를 생성하고 각 요소들을 따로 학습하기 때문에 최적화 및 실시간 적용에 어려움을 가지고 있다. 제안하는 연구는 YOLOv2 알고리즘을 적용하여 기존의 알고리즘이 가지고 있는 물체 탐지의 실시간 처리 문제점을 해결하여 실시간으로 지상에 있는 자동차를 탐지하는 방법을 제안한다. 제안하는 연구 방법의 실험을 위하여 오픈소스로 제공되는 Darknet을 사용하였으며 GTX-1080ti 4개를 탑재한 Deep learning 서버를 이용하여 실험하였다. 실험결과 YOLO를 활용한 자동차 탐지 방법은 기존의 알고리즘 보다 물체탐지에 대한 오버헤드를 감소 할 수 있었으며 실시간으로 지상에 존재하는 자동차를 탐지할 수 있었다.