• Title/Summary/Keyword: Object Recognition Algorithm

Search Result 517, Processing Time 0.031 seconds

Overview of Image-based Object Recognition AI technology for Autonomous Vehicles (자율주행 차량 영상 기반 객체 인식 인공지능 기술 현황)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1117-1123
    • /
    • 2021
  • Object recognition is to identify the location and class of a specific object by analyzing the given image when a specific image is input. One of the fields in which object recognition technology is actively applied in recent years is autonomous vehicles, and this paper describes the trend of image-based object recognition artificial intelligence technology in autonomous vehicles. The image-based object detection algorithm has recently been narrowed down to two methods (a single-step detection method and a two-step detection method), and we will analyze and organize them around this. The advantages and disadvantages of the two detection methods are analyzed and presented, and the YOLO/SSD algorithm belonging to the single-step detection method and the R-CNN/Faster R-CNN algorithm belonging to the two-step detection method are analyzed and described. This will allow the algorithms suitable for each object recognition application required for autonomous driving to be selectively selected and R&D.

Morphological Object Recognition Algorithm (몰포러지 물체인식 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • In this paper, a feature extraction and object recognition algorithm using only morphological operations is proposed. The morphological operations used in feature extraction are erosion and dilation, opening and closing combining erosion and dilation, and morphological edge and skeleton detection operation. In the process of recognizing an object based on features, a pooling operation is applied to reduce the dimension. Among various structuring elements, $3{\times}3$ rhombus, $3{\times}3$ square, and $5{\times}5$ circle are arbitrarily selected in morphological operation process. It has confirmed that the proposed algorithm can be applied in object recognition fields through experiments using Internet images.

3D Object Recognition Using Appearance Model Space of Feature Point (특징점 Appearance Model Space를 이용한 3차원 물체 인식)

  • Joo, Seong Moon;Lee, Chil Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • 3D object recognition using only 2D images is a difficult work because each images are generated different to according to the view direction of cameras. Because SIFT algorithm defines the local features of the projected images, recognition result is particularly limited in case of input images with strong perspective transformation. In this paper, we propose the object recognition method that improves SIFT algorithm by using several sequential images captured from rotating 3D object around a rotation axis. We use the geometric relationship between adjacent images and merge several images into a generated feature space during recognizing object. To clarify effectiveness of the proposed algorithm, we keep constantly the camera position and illumination conditions. This method can recognize the appearance of 3D objects that previous approach can not recognize with usually SIFT algorithm.

Visual Attention Algorithm for Object Recognition (물체 인식을 위한 시각 주목 알고리즘)

  • Ryu, Gwang-Geun;Lee, Sang-Hoon;Suh, Il-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.306-308
    • /
    • 2006
  • We propose an attention based object recognition system, to recognize object fast and robustly. For this we calculate visual stimulus degrees and make saliency maps. Through this map we find a strongly attentive part of image by stimulus degrees, where local features are extracted to recognize objects.

  • PDF

Query-based Visual Attention Algorithm for Object Recognition of A Mobile Robot (이동로봇의 물체인식을 위한 질의 기반 시각 집중 알고리즘)

  • Ryu, Gwang-Geun;Lee, Sang-Hoon;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • In this paper, we propose a query-based visual attention algorithm for effective object finding of a vision-based mobile robot. This algorithm is developed by extending conventional bottom-up visual attention algorithms. In our proposed algorithm various conspicuity maps are merged to make a saliency map, where weighting values are determined by query-dependent object properties. The saliency map is then used to find possible attentive location of queried object. To show the validities of our proposed algorithm, several objects are employed to compare performances of our proposed algorithm with those of conventional bottom-up approaches. Here, as one of exemplar query-dependent object property, color property is used.

Object Recognition of Robot Using 3D RFID System

  • Roh, Se-Gon;Park, Jin-Ho;Lee, Young-Hoon;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.62-67
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) technology has been suggested to support recognition and has been rapidly and widely applied. This paper introduces the more advanced RFID-based recognition. A novel tag named 3D tag, which facilitates the understanding of the object, was designed. The previous RFID-based system only detects the existence of the object, and therefore, the system should find the object and had to carry out a complex process such as pattern match to identify the object. 3D tag, however, not only detects the existence of the object as well as other tags, but also estimates the orientation and position of the object. These characteristics of 3D tag allows the robot to considerably reduce its dependence on other sensors required for object recognition the object. In this paper, we analyze the 3D tag's detection characteristic and the position and orientation estimation algorithm of the 3D tag-based RFID system.

  • PDF

Three-Dimensional Object Recognition System Using Shape from Stereo Algorithm (스테레오 기법을 적용한 3차원 물체인식 시스템)

  • Heo, Yun-Seok;Hong, Bong-Hwa
    • The Journal of Information Technology
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • The depth information of 3D image lost by projecting 3D-object to 2D-screen for earning image. If depth information is restored and is used to recognize 3D-object, we can make the more effective recognition system. We often use shape from stereo algorithm in order to restore this information. In this paper, we suggest 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In this system, we use the moving vector of object to reduce matching time and In second matching step, the unknown input image is compared with the reference images, which is made with octree codes. Octree codes are used in volume-based representation of a three dimensional object. The result of simulation show that the proposed 3-D object recognition system provides satisfactory performance.

  • PDF

Object Recognition using Smart Tag and Stereo Vision System on Pan-Tilt Mechanism

  • Kim, Jin-Young;Im, Chang-Jun;Lee, Sang-Won;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2379-2384
    • /
    • 2005
  • We propose a novel method for object recognition using the smart tag system with a stereo vision on a pan-tilt mechanism. We developed a smart tag which included IRED device. The smart tag is attached onto the object. We also developed a stereo vision system which pans and tilts for the object image to be the centered on each whole image view. A Stereo vision system on the pan-tilt mechanism can map the position of IRED to the robot coordinate system by using pan-tilt angles. And then, to map the size and pose of the object for the robot to coordinate the system, we used a simple model-based vision algorithm. To increase the possibility of tag-based object recognition, we implemented our approach by using as easy and simple techniques as possible.

  • PDF

Fundamental Research for Video-Integrated Collision Prediction and Fall Detection System to Support Navigation Safety of Vessels

  • Kim, Bae-Sung;Woo, Yun-Tae;Yu, Yung-Ho;Hwang, Hun-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.91-97
    • /
    • 2021
  • Marine accidents caused by ships have brought about economic and social losses as well as human casualties. Most of these accidents are caused by small and medium-sized ships and are due to their poor conditions and insufficient equipment compared with larger vessels. Measures are quickly needed to improve the conditions. This paper discusses a video-integrated collision prediction and fall detection system to support the safe navigation of small- and medium-sized ships. The system predicts the collision of ships and detects falls by crew members using the CCTV, displays the analyzed integrated information using automatic identification system (AIS) messages, and provides alerts for the risks identified. The design consists of an object recognition algorithm, interface module, integrated display module, collision prediction and fall detection module, and an alarm management module. For the basic research, we implemented a deep learning algorithm to recognize the ship and crew from images, and an interface module to manage messages from AIS. To verify the implemented algorithm, we conducted tests using 120 images. Object recognition performance is calculated as mAP by comparing the pre-defined object with the object recognized through the algorithms. As results, the object recognition performance of the ship and the crew were approximately 50.44 mAP and 46.76 mAP each. The interface module showed that messages from the installed AIS were accurately converted according to the international standard. Therefore, we implemented an object recognition algorithm and interface module in the designed collision prediction and fall detection system and validated their usability with testing.

Efficient Object Recognition by Masking Semantic Pixel Difference Region of Vision Snapshot for Lightweight Embedded Systems (경량화된 임베디드 시스템에서 의미론적인 픽셀 분할 마스킹을 이용한 효율적인 영상 객체 인식 기법)

  • Yun, Heuijee;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.813-826
    • /
    • 2022
  • AI-based image processing technologies in various fields have been widely studied. However, the lighter the board, the more difficult it is to reduce the weight of image processing algorithm due to a lot of computation. In this paper, we propose a method using deep learning for object recognition algorithm in lightweight embedded boards. We can determine the area using a deep neural network architecture algorithm that processes semantic segmentation with a relatively small amount of computation. After masking the area, by using more accurate deep learning algorithm we could operate object detection with improved accuracy for efficient neural network (ENet) and You Only Look Once (YOLO) toward executing object recognition in real time for lightweighted embedded boards. This research is expected to be used for autonomous driving applications, which have to be much lighter and cheaper than the existing approaches used for object recognition.