• Title/Summary/Keyword: Object Extracting

Search Result 335, Processing Time 0.026 seconds

Development of Sensibility Vocabulary Classification System for Sensibility Evaluation of Visitors According to Forest Environment

  • Lee, Jeong-Do;Joung, Dawou;Hong, Sung-Jun;Kim, Da-Young;Park, Bum-Jin
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 2019
  • Generally human sensibility is expressed in a certain language. To discover the sensibility of visitors in relation to the forest environment, it is first necessary to determine their exact meanings. Furthermore, it is necessary to sort these terms according to their meanings based on an appropriate classification system. This study attempted to develop a classification system for forest sensibility vocabulary by extracting Korean words used by forest visitors to express their sensibilities in relation to the forest environment, and established the structure of the system to classify the accumulated vocabulary. For this purpose, we extracted forest sensibility words based on literature review of experiences reported in the past as well as interviews of forest visitors, and categorized the words by meanings using the Standard Korean Language Dictionary maintained by the National Institute of the Korean Language. Next, the classification system for these words was established with reference to the classification system for vocabulary in the Korean language examined in previous studies of Korean language and literature. As a result, 137 forest sensibility words were collected using a documentary survey, and we categorized these words into four types: emotion, sense, evaluation, and existence. Categorizing the collected forest sensibility words based on this Korean language classification system resulted in the extraction of 40 representative sensibility words. This experiment enabled us to determine from where our sensibilities that find expressions in the forest are derived, that is, from sight, hearing, smell, taste, or touch, along with various other aspects of how our human sensibilities are expressed such as whether the subject of a word is person-centered or object-centered. We believe that the results of this study can serve as foundational data about forest sensibility.

MPM-Based Angular Animation of Particles using Polar Decomposition Theory (극 분해 이론을 활용한 MPM기반의 입자 회전 애니메이션)

  • Song, Chang-yong;Kim, Ki-hoon;Kim, Sun-jeong;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose a single framework based on the MPM(Material Point Method) that can represent the dynamic angular motion of the elementary particle unit. In this study, the particles can have various shapes while also describing linear and angular motion. As a result, unlike other particle-based simulations, which only represent linear movements of spherical (e.g. Circle, Sphere) particles, it is possible to express the visually dynamic motion of them. The proposed framework utilizes MPM, due to the fact that rotational motion can be decomposed and derived from large deformation. During the integration process of the presented technique, a deformation gradient tensor is decomposed by polar decomposition theory for extracting rotation tensor. By applying this together with the linear motion of each particle, as a result, it is possible to simultaneously express the angluar and linear motion of the particle itself. To verify the proposed method, we show the simulation of rotating particles scattering in the wind field, and the interaction(e.g. Collision) between a moving object and them by comparing the traditional MPM

Fashion Design of Disassembly and Assembly Based on Geometrical Analysis of the Body Figure (인체 형태의 기하학적 분석에 기반한 분해와 조합의 패션디자인 개발)

  • Kyung-Jin, Lee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.26 no.1
    • /
    • pp.61-76
    • /
    • 2024
  • The purpose of this study is the development of an experimental design that aims to implement three-dimensional fashion design by observing the human body, extracting and combining geometric shapes and forms, and focusing on attempts to decompose the geometry of the human body in art history. Considering the characteristics of fashion design, which inevitably reflect human images visually, this study considered works by deriving geometric shapes and forms of the human body and focusing on decomposition and combination to apply them to fashion design. The results obtained through the development of fashion design through decomposition and combination based on geometric human body analysis are as follows. First, geometric analysis of the human body as an object of expression continues from the history of Cubism to modern fashion design. Second, the geometric shapes of the human body that appear in contemporary fashion design maximize visual effects through three-dimensional composition, emphasizing simplicity while showing originality through various expressions. Third, when exploring the geometric shapes of a moving human body, it was possible to extract a wide variety of shapes and forms through drawing and simplifying the human body's movements. Fourth, the formative method of fashion design was introduced and used for the aesthetic combination of objects for fashion design through decomposition and combination. This study was able to show unique and diverse combinations of visually concise and ordered geometric shapes in the expression of fashion design by decomposing and combining them. The significance of these geometric forms is that they can diversify formative informativeness in the expression of fashion design with modern compositional beauty.

Design and Implementation of Early Warning Monitoring System for Cross-border Mining in Open-pit Mines (노천광산의 월경 채굴 조기경보 모니터링시스템의 설계 및 구현)

  • Li Ke;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.25-41
    • /
    • 2024
  • For the scenario of open pit mining, at present, manual periodic verification is mainly carried out in China with the help of video surveillance, which requires continuous investment in labor cost and has poor timeliness. In order to solve this difficult problem of early warning and monitoring, this paper researches a spatialized algorithmic model and designs an early warning system for open-pit mine transboundary mining, which is realized by calculating the coordinate information of the mining and extracting equipments and comparing it with the layer coordinates of the approval range of the mines in real time, so as to realize the determination of the transboundary mining behavior of the mines. By taking the Pingxiang area of Jiangxi Province as the research object, after the field experiment, it shows that the system runs stably and reliably, and verifies that the target tracking accuracy of the system is high, which can effectively improve the early warning capability of the open-pit mines' overstepping the boundary, improve the timeliness and accuracy of mine supervision, and reduce the supervision cost.

Computer Vision-Based Measurement Method for Wire Harness Defect Classification

  • Yun Jung Hong;Geon Lee;Jiyoung Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • In this paper, we propose a method for accurately and rapidly detecting defects in wire harnesses by utilizing computer vision to calculate six crucial measurement values: the length of crimped terminals, the dimensions (width) of terminal ends, and the width of crimped sections (wire and core portions). We employ Harris corner detection to locate object positions from two types of data. Additionally, we generate reference points for extracting measurement values by utilizing features specific to each measurement area and exploiting the contrast in shading between the background and objects, thus reflecting the slope of each sample. Subsequently, we introduce a method using the Euclidean distance and correction coefficients to predict values, allowing for the prediction of measurements regardless of changes in the wire's position. We achieve high accuracy for each measurement type, 99.1%, 98.7%, 92.6%, 92.5%, 99.9%, and 99.7%, achieving outstanding overall average accuracy of 97% across all measurements. This inspection method not only addresses the limitations of conventional visual inspections but also yields excellent results with a small amount of data. Moreover, relying solely on image processing, it is expected to be more cost-effective and applicable with less data compared to deep learning methods.

Comparative Research of Image Classification and Image Segmentation Methods for Mapping Rural Roads Using a High-resolution Satellite Image (고해상도 위성영상을 이용한 농촌 도로 매핑을 위한 영상 분류 및 영상 분할 방법 비교에 관한 연구)

  • CHOUNG, Yun-Jae;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.73-82
    • /
    • 2021
  • Rural roads are the significant infrastructure for developing and managing the rural areas, hence the utilization of the remote sensing datasets for managing the rural roads is necessary for expanding the rural transportation infrastructure and improving the life quality of the rural residents. In this research, the two different methods such as image classification and image segmentation were compared for mapping the rural road based on the given high-resolution satellite image acquired in the rural areas. In the image classification method, the deep learning with the multiple neural networks was employed to the given high-resolution satellite image for generating the object classification map, then the rural roads were mapped by extracting the road objects from the generated object classification map. In the image segmentation method, the multiresolution segmentation was employed to the same satellite image for generating the segment image, then the rural roads were mapped by merging the road objects located on the rural roads on the satellite image. We used the 100 checkpoints for assessing the accuracy of the two rural roads mapped by the different methods and drew the following conclusions. The image segmentation method had the better performance than the image classification method for mapping the rural roads using the give satellite image, because some of the rural roads mapped by the image classification method were not identified due to the miclassification errors occurred in the object classification map, while all of the rural roads mapped by the image segmentation method were identified. However some of the rural roads mapped by the image segmentation method also had the miclassfication errors due to some rural road segments including the non-rural road objects. In future research the object-oriented classification or the convolutional neural networks widely used for detecting the precise objects from the image sources would be used for improving the accuracy of the rural roads using the high-resolution satellite image.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

Segmentation of Airborne LIDAR Data: From Points to Patches (항공 라이다 데이터의 분할: 점에서 패치로)

  • Lee Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.111-121
    • /
    • 2006
  • Recently, many studies have been performed to apply airborne LIDAR data to extracting urban models. In order to model efficiently the man-made objects which are the main components of these urban models, it is important to extract automatically planar patches from the set of the measured three-dimensional points. Although some research has been carried out for their automatic extraction, no method published yet is sufficiently satisfied in terms of the accuracy and completeness of the segmentation results and their computational efficiency. This study thus aimed to developing an efficient approach to automatic segmentation of planar patches from the three-dimensional points acquired by an airborne LIDAR system. The proposed method consists of establishing adjacency between three-dimensional points, grouping small number of points into seed patches, and growing the seed patches into surface patches. The core features of this method are to improve the segmentation results by employing the variable threshold value repeatedly updated through a statistical analysis during the patch growing process, and to achieve high computational efficiency using priority heaps and sequential least squares adjustment. The proposed method was applied to real LIDAR data to evaluate the performance. Using the proposed method, LIDAR data composed of huge number of three dimensional points can be converted into a set of surface patches which are more explicit and robust descriptions. This intermediate converting process can be effectively used to solve object recognition problems such as building extraction.

Postprocessing of Inter-Frame Coded Images Based on Convex Projection and Regularization (POCS와 정규화를 기반으로한 프레임간 압출 영사의 후처리)

  • Kim, Seong-Jin;Jeong, Si-Chang;Hwang, In-Gyeong;Baek, Jun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • In order to reduce blocking artifacts in inter-frame coded images, we propose a new image restoration algorithm, which directly processes differential images before reconstruction. We note that blocking artifact in inter-frame coded images is caused by both 8$\times$8 DCT and 16$\times$16 macroblock based motion compensation, while that of intra-coded images is caused by 8$\times$8 DCT only. According to the observation, we Propose a new degradation model for differential images and the corresponding restoration algorithm that utilizes additional constraints and convex sets for discontinuity inside blocks. The proposed restoration algorithm is a modified version of standard regularization that incorporate!; spatially adaptive lowpass filtering with consideration of edge directions by utilizing a part of DCT coefficients. Most of video coding standard adopt a hybrid structure of block-based motion compensation and block discrete cosine transform (BDCT). By this reason, blocking artifacts are occurred on both block boundary and block interior For more complete removal of both kinds of blocking artifacts, the restored differential image must satisfy two constraints, such as, directional discontinuities on block boundary and block interior Those constraints have been used for defining convex sets for restoring differential images.

Development of a Metamodel-Based Healthcare Service System using OSGi Component Platform (OSGi 컴포넌트 플랫폼을 이용한 메타모델 기반의 건강관리 서비스 시스템 개발)

  • Kim, Tae-Woong;Kim, Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • A healthcare system is a type of medical information system that performs early detection and prevention in diseases by checking one's health condition periodically. Such a healthcare system is based on the signal obtained from the body. However, the developed existing system represents certain differences in the storage and description of vital signs according to medicare devices and the evaluation method of the system. It brings some disadvantages, such as lacks in the interoperability between systems, increases in the development cost of systems, and absence of a unified system. Thus, this study develops a healthcare system based on a meta model. For establishing this objective, this study describes and stores vital sign data based on the standard meta model of HL7 and applies OCL, which is a mathematical specification language, for defining wellness indexes and extracting data in order to evaluate health risk appraisals in health. In addition, this study implements components based on OSGi and assemble them in order to easily extend various devices and systems. By describing vital data based on the meta model, it represents some advantages that it makes possible to ensure the interoperability between systems and introduce the standardization of the evaluation method of health conditions through defining the wellness index using OCL. Also, it provides dear specifications.