• Title/Summary/Keyword: Object Extracting

Search Result 337, Processing Time 0.025 seconds

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.

The development of module for automatic extraction and database construction of BIM based shape-information reconstructed on spatial information (공간정보를 중심으로 재구성한 BIM 기반 형상정보의 자동추출 및 데이터베이스 구축 모듈 개발)

  • Choi, Jun-Woo;Kim, Shin;Song, Young-hak;Park, Kyung-Soon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • In this paper, in order to maximize the input process efficiency of the building energy simulation field, the authors developed the automatic extraction module of spatial information based BIM geometry information. Existing research or software extracts geometry information based on object information, but it can not be used in the field of energy simulation because it is inconsistent with the geometry information of the object constituting the thermal zone of the actual building model. Especially, IFC-based geometry information extraction module is needed to link with other architectural fields from the viewpoint of reuse of building information. The study method is as follows. (1) Grasp the category and attribute information to be extracted for energy simulation and Analyze the IFC structure based on spatial information (2) Design the algorithm for extracting and reprocessing information for energy simulation from IFC file (use programming language Phython) (3) Develop the module that generates a geometry information database based on spatial information using reprocessed information (4) Verify the accuracy of the development module. In this paper, the reprocessed information can be directly used for energy simulation and it can be widely used regardless of the kind of energy simulation software because it is provided in database format. Therefore, it is expected that the energy simulation process efficiency in actual practice can be maximized.

Study on Weight Summation Storage Algorithm of Facial Recognition Landmark (가중치 합산 기반 안면인식 특징점 저장 알고리즘 연구)

  • Jo, Seonguk;You, Youngkyon;Kwak, Kwangjin;Park, Jeong-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.163-170
    • /
    • 2022
  • This paper introduces a method of extracting facial features due to unrefined inputs in real life and improving the problem of not guaranteeing the ideal performance and speed of the object recognition model through a storage algorithm through weight summation. Many facial recognition processes ensure accuracy in ideal situations, but the problem of not being able to cope with numerous biases that can occur in real life is drawing attention, which may soon lead to serious problems in the face recognition process closely related to security. This paper presents a method of quickly and accurately recognizing faces in real time by comparing feature points extracted as input with a small number of feature points that are not overfit to multiple biases, using that various variables such as picture composition eventually take an average form.

A Dual-Structured Self-Attention for improving the Performance of Vision Transformers (비전 트랜스포머 성능향상을 위한 이중 구조 셀프 어텐션)

  • Kwang-Yeob Lee;Hwang-Hee Moon;Tae-Ryong Park
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.251-257
    • /
    • 2023
  • In this paper, we propose a dual-structured self-attention method that improves the lack of regional features of the vision transformer's self-attention. Vision Transformers, which are more computationally efficient than convolutional neural networks in object classification, object segmentation, and video image recognition, lack the ability to extract regional features relatively. To solve this problem, many studies are conducted based on Windows or Shift Windows, but these methods weaken the advantages of self-attention-based transformers by increasing computational complexity using multiple levels of encoders. This paper proposes a dual-structure self-attention using self-attention and neighborhood network to improve locality inductive bias compared to the existing method. The neighborhood network for extracting local context information provides a much simpler computational complexity than the window structure. CIFAR-10 and CIFAR-100 were used to compare the performance of the proposed dual-structure self-attention transformer and the existing transformer, and the experiment showed improvements of 0.63% and 1.57% in Top-1 accuracy, respectively.

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Design and Implementation of Dangerous of Image Recognition based Cup Contamination Measurement System (이미지 인식 기반의 컵 오염 여부 측정 시스템의 설계 및 구현)

  • Lee, Taejun;Chae, Heeseok;Lee, Sangwon;Kim, Jaemin;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.213-215
    • /
    • 2022
  • Recently, deep learning technology that processes images has been widely used in fire detection, autonomous driving, and defective product detection. In particular, in order to determine whether a product is contaminated or not, it can be identified through the contaminants passed from the existing sensor data, but technologies for recognizing cracks in products or contaminants themselves as images are being actively studied in various fields. In this paper, a system for classifying uncontaminated normal cups and contaminated cups through images was designed and implemented. The image was analyzed using an open image and a photographed image, and the image was analyzed by extracting the upper part of the cup image using Google Objectron for 3D object recognition. Through this study, it is thought that it will be used in various ways for research that can extract the contamination level of products required in the hygiene field based on images.

  • PDF

Secure Self-Driving Car System Resistant to the Adversarial Evasion Attacks (적대적 회피 공격에 대응하는 안전한 자율주행 자동차 시스템)

  • Seungyeol Lee;Hyunro Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.907-917
    • /
    • 2023
  • Recently, a self-driving car have applied deep learning technology to advanced driver assistance system can provide convenience to drivers, but it is shown deep that learning technology is vulnerable to adversarial evasion attacks. In this paper, we performed five adversarial evasion attacks, including MI-FGSM(Momentum Iterative-Fast Gradient Sign Method), targeting the object detection algorithm YOLOv5 (You Only Look Once), and measured the object detection performance in terms of mAP(mean Average Precision). In particular, we present a method applying morphology operations for YOLO to detect objects normally by removing noise and extracting boundary. As a result of analyzing its performance through experiments, when an adversarial attack was performed, YOLO's mAP dropped by at least 7.9%. The YOLO applied our proposed method can detect objects up to 87.3% of mAP performance.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

The Evaluation Method of Software Usability based on UI (UI 중심의 소프트웨어 사용성 평가 방법)

  • Lee, Ha-Young;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.105-117
    • /
    • 2013
  • Viewpoint about the quality of software is various. But, from the end-user point of view, user interface of software may be all to express the quality of software. But the detailed evaluation criteria were not established about usability evaluation method based on user interface so far, though user interface of software is the main object of usability quality characteristics. In this paper, we established a system about the method extracting and evaluating some quality characteristics elements measurable form user interface of software by analyzing the relationship between the elements constructing quality characteristics and user interface related to quality evaluation of software. We expect that this result of study will be a fundamental study adapting and evaluating to various types of user interface.

Earth Reflection Effect Analysis in the Environment of Line Source Induction (전력선 유도 환경에서의 지면 반사계 영향 분석)

  • Lee, Sangmu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • The earth reflection effect on the induced voltage by line source such as power line occurring induction inteference is analyzed to scrutinize how much it would reduce the induced voltage. Using hankel transformation including bessel function, directly calculation formulae for extracting a refelction coefficient is a most important technical application in this paper since the reflection coefficient on the earth cannot be deduced by a general coefficient calculation formulae according to a plain wave. The electric field is utilized to transform the electromagnetic field into an induced voltage. The composed efficiency to a source induction voltage by an earth reflection is about a range of 60~70% for the axis constellation of each object like observation point, source position and other material parameters.