• Title/Summary/Keyword: Object Detection Deep Learning Model

Search Result 275, Processing Time 0.027 seconds

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

Research on Ocular Data Analysis and Eye Tracking in Divers

  • Ye Jun Lee;Yong Kuk Kim;Da Young Kim;Jeongtack Min;Min-Kyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.43-51
    • /
    • 2024
  • This paper proposes a method for acquiring and analyzing ocular data using a special-purpose diver mask targeted at divers who primarily engage in underwater activities. This involves tracking the user's gaze with the help of a custom-built ocular dataset and a YOLOv8-nano model developed for this purpose. The model achieved an average processing time of 45.52ms per frame and successfully recognized states of eyes being open or closed with 99% accuracy. Based on the analysis of the ocular data, a gaze tracking algorithm was developed that can map to real-world coordinates. The validation of this algorithm showed an average error rate of about 1% on the x-axis and about 6% on the y-axis.

A Driver's Condition Warning System using Eye Aspect Ratio (눈 영상비를 이용한 운전자 상태 경고 시스템)

  • Shin, Moon-Chang;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.349-356
    • /
    • 2020
  • This paper introduces the implementation of a driver's condition warning system using eye aspect ratio to prevent a car accident. The proposed driver's condition warning system using eye aspect ratio consists of a camera, that is required to detect eyes, the Raspberrypie that processes information on eyes from the camera, buzzer and vibrator, that are required to warn the driver. In order to detect and recognize driver's eyes, the histogram of oriented gradients and face landmark estimation based on deep-learning are used. Initially the system calculates the eye aspect ratio of the driver from 6 coordinates around the eye and then gets each eye aspect ratio values when the eyes are opened and closed. These two different eye aspect ratio values are used to calculate the threshold value that is necessary to determine the eye state. Because the threshold value is adaptively determined according to the driver's eye aspect ratio, the system can use the optimal threshold value to determine the driver's condition. In addition, the system synthesizes an input image from the gray-scaled and LAB model images to operate in low lighting conditions.

The Study on The Identification Model of Friend or Foe on Helicopter by using Binary Classification with CNN

  • Kim, Tae Wan;Kim, Jong Hwan;Moon, Ho Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • There has been difficulties in identifying objects by relying on the naked eye in various surveillance systems. There is a growing need for automated surveillance systems to replace soldiers in the field of military surveillance operations. Even though the object detection technology is developing rapidly in the civilian domain, but the research applied to the military is insufficient due to a lack of data and interest. Thus, in this paper, we applied one of deep learning algorithms, Convolutional Neural Network-based binary classification to develop an autonomous identification model of both friend and foe helicopters (AH-64, Mi-17) among the military weapon systems, and evaluated the model performance by considering accuracy, precision, recall and F-measure. As the result, the identification model demonstrates 97.8%, 97.3%, 98.5%, and 97.8 for accuracy, precision, recall and F-measure, respectively. In addition, we analyzed the feature map on convolution layers of the identification model in order to check which area of imagery is highly weighted. In general, rotary shaft of rotating wing, wheels, and air-intake on both of ally and foe helicopters played a major role in the performance of the identification model. This is the first study to attempt to classify images of helicopters among military weapons systems using CNN, and the model proposed in this study shows higher accuracy than the existing classification model for other weapons systems.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.