• 제목/요약/키워드: Object Detection Deep Learning Model

검색결과 285건 처리시간 0.029초

물체 파지점 검출 향상을 위한 분할 기반 깊이 지도 조정 (Segmentation-Based Depth Map Adjustment for Improved Grasping Pose Detection)

  • 신현수;무하마드 라힐 아파잘;이성온
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.16-22
    • /
    • 2024
  • Robotic grasping in unstructured environments poses a significant challenge, demanding precise estimation of gripping positions for diverse and unknown objects. Generative Grasping Convolution Neural Network (GG-CNN) can estimate the position and direction that can be gripped by a robot gripper for an unknown object based on a three-dimensional depth map. Since GG-CNN uses only a depth map as an input, the precision of the depth map is the most critical factor affecting the result. To address the challenge of depth map precision, we integrate the Segment Anything Model renowned for its robust zero-shot performance across various segmentation tasks. We adjust the components corresponding to the segmented areas in the depth map aligned through external calibration. The proposed method was validated on the Cornell dataset and SurgicalKit dataset. Quantitative analysis compared to existing methods showed a 49.8% improvement with the dataset including surgical instruments. The results highlight the practical importance of our approach, especially in scenarios involving thin and metallic objects.

Automatic Estimation of Tillers and Leaf Numbers in Rice Using Deep Learning for Object Detection

  • Hyeokjin Bak;Ho-young Ban;Sungryul Chang;Dongwon Kwon;Jae-Kyeong Baek;Jung-Il Cho ;Wan-Gyu Sang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.81-81
    • /
    • 2022
  • Recently, many studies on big data based smart farming have been conducted. Research to quantify morphological characteristics using image data from various crops in smart farming is underway. Rice is one of the most important food crops in the world. Much research has been done to predict and model rice crop yield production. The number of productive tillers per plant is one of the important agronomic traits associated with the grain yield of rice crop. However, modeling the basic growth characteristics of rice requires accurate data measurements. The existing method of measurement by humans is not only labor intensive but also prone to human error. Therefore, conversion to digital data is necessary to obtain accurate and phenotyping quickly. In this study, we present an image-based method to predict leaf number and evaluate tiller number of individual rice crop using YOLOv5 deep learning network. We performed using various network of the YOLOv5 model and compared them to determine higher prediction accuracy. We ako performed data augmentation, a method we use to complement small datasets. Based on the number of leaves and tiller actually measured in rice crop, the number of leaves predicted by the model from the image data and the existing regression equation were used to evaluate the number of tillers using the image data.

  • PDF

EfficientNetV2 및 YOLOv5를 사용한 금속 표면 결함 검출 및 분류 (Metal Surface Defect Detection and Classification using EfficientNetV2 and YOLOv5)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.577-586
    • /
    • 2022
  • 철강 표면 결함의 검출 및 분류는 철강 산업의 제품 품질 관리에 중요하다. 그러나 정확도가 낮고 속도가 느리기 때문에 기존 방식은 생산 라인에서 효과적으로 사용할 수 없다. 현재 널리 사용되는 알고리즘(딥러닝 기반)은 정확도 문제가 있으며 아직 개발의 여지가 있다. 본 논문에서는 이미지 분류를 위한 EfficientNetV2와 물체 검출기로 YOLOv5를 결합한 강철 표면 결함 검출 방법을 제안한다. 이 모델의 장점은 훈련 시간이 짧고 정확도가 높다는 것이다. 먼저 EfficientNetV2 모델에 입력되는 이미지는 결함 클래스를 분류하고 결함이 있을 확률을 예측한다. 결함이 있을 확률이 0.3보다 작으면 알고리즘은 결함이 없는 샘플로 인식한다. 그렇지 않으면 샘플이 YOLOv5에 추가로 입력되어 금속 표면의 결함 감지 프로세스를 수행한다. 실험에 따르면 제안된 모델은 NEU 데이터 세트에서 98.3%의 정확도로 우수한 성능을 보였고, 동시에 평균 훈련 속도는 다른 모델보다 단축된 것으로 나타났다.

영유아 이상징후 감지를 위한 표정 인식 알고리즘 개선 (The improved facial expression recognition algorithm for detecting abnormal symptoms in infants and young children)

  • 김윤수;이수인;석종원
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.430-436
    • /
    • 2021
  • 비접촉형 체온 측정 시스템은 광학 및 열화상 카메라를 활용하여 집단시설의 발열성 질병을 관리하는 핵심 요소 중 하나이다. 기존 체온 측정 시스템은 딥러닝 기반 얼굴검출 알고리즘이 사용되어 얼굴영역의 단순 체온 측정에는 활용할 수 있지만, 의사표현이 어려운 영유아의 이상 징후를 인지하는데 한계가 있다. 본 논문에서는 기존의 체온 측정 시스템에서 영유아의 이상징후 감지를 위해 표정인식 알고리즘을 개선한다. 제안된 방법은 객체탐지 모델을 사용하여 영상에서 영유아를 검출한 후 얼굴영역을 추출하고 표정인식의 핵심 요소인 눈, 코, 입의 좌표를 획득한다. 이후 획득된 좌표를 기반으로 선택적 샤프닝 필터를 적용하여 표정인식을 진행한다. 실험결과에 따르면 제안된 알고리즘은 UTK 데이터셋에서 무표정, 웃음, 슬픔 3가지 표정에 대해 각각 2.52%, 1.12%, 2.29%가 향상되었다.

딥 러닝 기반의 팬옵틱 분할 기법 분석 (Survey on Deep Learning-based Panoptic Segmentation Methods)

  • 권정은;조성인
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

플라스틱 재활용을 위한 YOLO기반의 자동 분류시스템 (YOLO Based Automatic Sorting System for Plastic Recycling)

  • 김용준;조태욱;박형근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.382-384
    • /
    • 2021
  • 본 연구에서는 실시간 물체 인식 알고리즘인 YOLO (You Only Look Once)를 이용하여 플라스틱의 종류를 자동으로 분류하는 시스템을 구현하였다. 시스템은 Nvidia 사에서 만든 딥러닝, 컴퓨터비전용 소형 컴퓨터인 Jetson Nano에 YOLO를 이용하여 플라스틱 분리배출 마크를 인식할 수 있도록 훈련시킨 모델을 탑재하여 구성하였다. 웹캠을 이용해서 플라스틱 쓰레기의 분리배출 마크를 PET, HDPE, PP 세 종류로 인식하고 모터를 조절하여 종류에 따라 분류될 수 있도록 하였다. 이 자동 분류기를 구현함으로 써 사람이 직접 플라스틱 분리배출 마크를 확인하여 분리배출하는 수고를 덜어줄 수 있다는 점에서 편의성을 가지며 정확한 분리수거를 통해 재활용의 효율성을 높일 수 있다.

  • PDF

Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출 (Crack Detection on the Road in Aerial Image using Mask R-CNN)

  • 이민혜;남광우;이창우
    • 한국산업정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.23-29
    • /
    • 2019
  • 기존의 균열 검출 방법은 많은 인력과 시간, 비용이 소모되는 문제점이 있다. 이러한 문제를 해결하고자 차량이나 드론을 이용하여 취득한 영상에서 균열 정보를 파악하고 정보화하는 자동검출시스템이 요구되고 있다. 본 논문에서는 드론으로 촬영한 도로 영상에서의 균열 검출 연구를 진행한다. 획득한 항공영상은 전처리와 라벨링(Labeling) 작업을 통해 균열의 형태정보 데이터셋(data set)을 생성한다. 생성한 데이터셋을 Mask R-CNN(regions with convolution neural network) 딥러닝(deep learning) 모델에 적용하여 다양한 균열 정보가 학습된 새로운 모델을 획득하였다. 획득 모델을 이용한 실험 결과, 제시된 항공 영상에서 균열을 평균 73.5%의 정확도로 검출하였으며 특정 형태의 균열 영역도 예측하는 것을 확인할 수 있었다.

샴 네트워크를 사용하여 추적 레이블을 사용하지 않는 다중 객체 검출 및 추적기 학습에 관한 연구 (Training of a Siamese Network to Build a Tracker without Using Tracking Labels)

  • 강정규;송유승;민경욱;최정단
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.274-286
    • /
    • 2022
  • 이동객체 추적은 컴퓨터 비전 분야에서 오랜 시간 동안 연구가 진행되어 온 분야로 자율주행이나 운전 보조 시스템 등의 시스템에서 아주 중요한 역할을 수행하고 있다. 이동객체 추적 기술은 일반적으로 객체를 검출하는 검출기와 검출된 객체를 추적하는 추적기의 결합으로 이루어져 있다. 검출기는 다양한 데이터셋이 공개되어 사용되고 있기 때문에 쉽게 좋은 모델을 학습할 수 있지만, 추적기의 경우 상대적으로 공개된 데이터셋도 적고 직접 데이터셋을 구성하는 것도 검출기 데이터셋에 비해 굉장히 오랜 시간을 소요한다. 이에 검출기를 따로 개발하고, 별도의 추적기를 학습 기반이 아닌 방식을 활용하여 개발하는 경우가 많은데 이런 경우 두 개의 시스템이 차례로 작동하게 되어 전체 시스템의 속도를 느리게 하고 앞단의 검출기의 성능이 변할 때마다 별도로 추적기 또한 조정해줘야 한다는 단점이 있다. 이에 본 연구는 검출용 데이터셋만을 사용하여 검출과 추적을 동시에 수행하는 모델을 구성하는 방법을 제안한다. 데이터 증강 기술과 샴 네트워크를 사용하여 단일 이미지에서 객체를 검출 및 추적하는 방법을 연구하였다. 공개 데이터셋에 실험을 진행하여 학습 결과 높은 속도로 작동하는 이동객체 검출 및 추적기를 학습할 수 있음을 검증하였다.

통제되지 않는 농작물 조건에서 쌀 잡초의 실시간 검출에 관한 연구 (Towards Real Time Detection of Rice Weed in Uncontrolled Crop Conditions)

  • 무하마드 움라이즈;김상철
    • 사물인터넷융복합논문지
    • /
    • 제6권1호
    • /
    • pp.83-95
    • /
    • 2020
  • 실제 복잡다난한 농작물 밭 환경에서 잡초를 정밀하게 검출하는 것은 이전의 접근방법들로는 이미지 프레임을 정확하게 처리하는 속도 면에서 부족했다. 식물의 질병 분류 문제가 중요시 되는 상황에서 특히 작물의 잡초 문제는 큰 화제가 되고 있다. 이전의 접근방식들은 빠른 알고리즘을 사용하지만 추론 시간이 실시간에 가깝지 않아 통제되지 않은 조건에서 비현실적인 해결책이 된다. 따라서, 복잡한 벼 잡초 검출 과제에 대한 탐지 모델을 제안한다. 실험 결과에 따르면, 우리의 접근 방식의 추론 시간은 잡초 검출 과제에서 상당한 시간절약을 보여준다. 실제 조건에서 실제로 적용할 수 있는 것으로 나타난다. 주어진 예시들은 쌀의 두 가지 성장 단계에서 수집되었고 직접 주석을 달았다.

개인 성향 추출을 위한 딥러닝 기반 SNS 리뷰 분석 방법에 관한 연구 (A Study on SNS Reviews Analysis based on Deep Learning for User Tendency)

  • 박우진;이주오;이형걸;김아연;허승연;안용학
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.9-17
    • /
    • 2020
  • 본 논문에서는 개인의 성향을 추출하기 위한 딥러닝 기반의 SNS 리뷰 분석 방법을 제안한다. 기존의 SNS 리뷰 분석 방법은 대부분이 가장 높은 가중치를 기반으로 처리되기 때문에 여러 관심사에 대한 다양한 의견을 반영하지 못하는 문제점이 있다. 이를 해결하기 위해 제안된 방법은 음식을 대상으로 한 SNS의 리뷰에서 사용자의 개인적인 성향을 추출하기 위한 방법이다. YOLOv3 모델을 사용하여 분류체계를 작성하고, BiLSTM 모델을 통해 감성분석을 수행한 후 집합 알고리즘을 통해 다양한 개인적 성향을 추출한다. 실험 결과, YOLOv3 모델의 경우 Top-1 88.61%, Top-5 90.13%의 성능을 보여주었으며, BiLSTM 모델의 경우 90.99%의 정확도를 보여주었다. 또한, SNS 리뷰 분류에서의 개인 성향에 대한 다양성을 히트맵을 통해 시각화하여 확인하였다. 향후에는 다양한 분야에서의 개인 성향을 추출하여 사용자 맞춤 서비스나 마케팅 등에 활용될 것으로 기대된다.