• Title/Summary/Keyword: Object Detection Deep Learning Model

Search Result 285, Processing Time 0.032 seconds

Implementation of Fish Detection Based on Convolutional Neural Networks (CNN 기반의 물고기 탐지 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.124-129
    • /
    • 2020
  • Autonomous underwater vehicle makes attracts to many researchers. This paper proposes a convolutional neural network (CNN) based fish detection method. Since there are not enough data sets in the process of training, overfitting problem can be occurred in deep learning. To solve the problem, we apply the dropout algorithm to simplify the model. Experimental result showed that the implemented method is promising, and the effectiveness of identification by dropout approach is highly enhanced.

A Study on Image Preprocessing Methods for Automatic Detection of Ship Corrosion Based on Deep Learning (딥러닝 기반 선박 부식 자동 검출을 위한 이미지 전처리 방안 연구)

  • Yun, Gwang-ho;Oh, Sang-jin;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.573-586
    • /
    • 2022
  • Corrosion can cause dangerous and expensive damage and failures of ship hulls and equipment. Therefore, it is necessary to maintain the vessel by periodic corrosion inspections. During visual inspection, many corrosion locations are inaccessible for many reasons, especially safety's point of view. Including subjective decisions of inspectors is one of the issues of visual inspection. Automation of visual inspection is tried by many pieces of research. In this study, we propose image preprocessing methods by image patch segmentation and thresholding. YOLOv5 was used as an object detection model after the image preprocessing. Finally, it was evaluated that corrosion detection performance using the proposed method was improved in terms of mean average precision.

Application of Deep Learning Algorithm for Detecting Construction Workers Wearing Safety Helmet Using Computer Vision (건설현장 근로자의 안전모 착용 여부 검출을 위한 컴퓨터 비전 기반 딥러닝 알고리즘의 적용)

  • Kim, Myung Ho;Shin, Sung Woo;Suh, Yong Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.29-37
    • /
    • 2019
  • Since construction sites are exposed to outdoor environments, working conditions are significantly dangerous. Thus, wearing of the personal protective equipments such as safety helmet is very important for worker safety. However, construction workers are often wearing-off the helmet as inconvenient and uncomportable. As a result, a small mistake may lead to serious accident. For this, checking of wearing safety helmet is important task to safety managers in field. However, due to the limited time and manpower, the checking can not be executed for every individual worker spread over a large construction site. Therefore, if an automatic checking system is provided, field safety management should be performed more effectively and efficiently. In this study, applicability of deep learning based computer vision technology is investigated for automatic checking of wearing safety helmet in construction sites. Faster R-CNN deep learning algorithm for object detection and classification is employed to develop the automatic checking model. Digital camera images captured in real construction site are used to validate the proposed model. Based on the results, it is concluded that the proposed model may effectively be used for automatic checking of wearing safety helmet in construction site.

Detection of Smoking Behavior in Images Using Deep Learning Technology (딥러닝 기술을 이용한 영상에서 흡연행위 검출)

  • Dong Jun Kim;Yu Jin Choi;Kyung Min Park;Ji Hyun Park;Jae-Moon Lee;Kitae Hwang;In Hwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.107-113
    • /
    • 2023
  • This paper proposes a method for detecting smoking behavior in images using artificial intelligence technology. Since smoking is not a static phenomenon but an action, the object detection technology was combined with the posture estimation technology that can detect the action. A smoker detection learning model was developed to detect smokers in images, and the characteristics of smoking behaviors were applied to posture estimation technology to detect smoking behaviors in images. YOLOv8 was used for object detection, and OpenPose was used for posture estimation. In addition, when smokers and non-smokers are included in the image, a method of separating only people was applied. The proposed method was implemented using Google Colab NVIDEA Tesla T4 GPU in Python, and it was found that the smoking behavior was perfectly detected in the given video as a result of the test.

Crosswalk Detection Model for Visually impaired Using Deep Learning (딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구)

  • Junsoo Kim;Hyuk Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

Real Time Hornet Classification System Based on Deep Learning (딥러닝을 이용한 실시간 말벌 분류 시스템)

  • Jeong, Yunju;Lee, Yeung-Hak;Ansari, Israfil;Lee, Cheol-Hee
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1141-1147
    • /
    • 2020
  • The hornet species are so similar in shape that they are difficult for non-experts to classify, and because the size of the objects is small and move fast, it is more difficult to detect and classify the species in real time. In this paper, we developed a system that classifies hornets species in real time based on a deep learning algorithm using a boundary box. In order to minimize the background area included in the bounding box when labeling the training image, we propose a method of selecting only the head and body of the hornet. It also experimentally compares existing boundary box-based object recognition algorithms to find the best algorithms that can detect wasps in real time and classify their species. As a result of the experiment, when the mish function was applied as the activation function of the convolution layer and the hornet images were tested using the YOLOv4 model with the Spatial Attention Module (SAM) applied before the object detection block, the average precision was 97.89% and the average recall was 98.69%.

Structural live load surveys by deep learning

  • Li, Yang;Chen, Jun
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.145-157
    • /
    • 2022
  • The design of safe and economical structures depends on the reliable live load from load survey. Live load surveys are traditionally conducted by randomly selecting rooms and weighing each item on-site, a method that has problems of low efficiency, high cost, and long cycle time. This paper proposes a deep learning-based method combined with Internet big data to perform live load surveys. The proposed survey method utilizes multi-source heterogeneous data, such as images, voice, and product identification, to obtain the live load without weighing each item through object detection, web crawler, and speech recognition. The indoor objects and face detection models are first developed based on fine-tuning the YOLOv3 algorithm to detect target objects and obtain the number of people in a room, respectively. Each detection model is evaluated using the independent testing set. Then web crawler frameworks with keyword and image retrieval are established to extract the weight information of detected objects from Internet big data. The live load in a room is derived by combining the weight and number of items and people. To verify the feasibility of the proposed survey method, a live load survey is carried out for a meeting room. The results show that, compared with the traditional method of sampling and weighing, the proposed method could perform efficient and convenient live load surveys and represents a new load research paradigm.

A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning (딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구)

  • Bak, Suho;Kim, Heung-Min;Lee, Heeone;Han, Jeong-Ik;Kim, Tak-Young;Lim, Jae-Young;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However,should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification (넙치 질병 증상 분류를 위한 객체 탐지 딥러닝 모델 성능 평가)

  • Kyung won Cho;Ran Baik;Jong Ho Jeong;Chan Jin Kim;Han Suk Choi;Seok Won Jung;Hvun Seung Son
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.71-84
    • /
    • 2023
  • Paralichthys olivaceus accounts for a large proportion, accounting for more than half of Korea's aquaculture industry. However, about 25-30% of the total breeding volume throughout the year occurs due to diseases, which has a very bad impact on the economic feasibility of fish farms. For the economic growth of Paralichthys olivaceus farms, it is necessary to quickly and accurately diagnose disease symptoms by automating the diagnosis of Paralichthys olivaceus diseases. In this study, we create training data using innovative data collection methods, refining data algorithms, and techniques for partitioning dataset, and compare the Paralichthys olivaceus disease symptom detection performance of four object detection deep learning models(such as YOLOv8, Swin, Vitdet, MvitV2). The experimental findings indicate that the YOLOv8 model demonstrates superiority in terms of average detection rate (mAP) and Estimated Time of Arrival (ETA). If the performance of the AI model proposed in this study is verified, Paralichthys olivaceus farms can diagnose disease symptoms in real time, and it is expected that the productivity of the farm will be greatly improved by rapid preventive measures according to the diagnosis results.

Quadruped Robot for Walking on the Uneven Terrain and Object Detection using Deep Learning (딥러닝을 이용한 객체검출과 비평탄 지형 보행을 위한 4족 로봇)

  • Myeong Suk Pak;Seong Min Ha;Sang Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.237-242
    • /
    • 2023
  • Research on high-performance walking robots is being actively conducted, and quadruped walking robots are receiving a lot of attention due to their excellent mobility and adaptability on uneven terrain, but they are difficult to introduce and utilize due to high cost. In this paper, to increase utilization by applying intelligent functions to a low-cost quadruped robot, we present a method of improving uneven terrain overcoming ability by mounting IMU and reinforcement learning on embedded board and automatically detecting objects using camera and deep learning. The robot consists of the legs of a quadruped mammal, and each leg has three degrees of freedom. We train complex terrain in simulation environments with designed 3D model and apply it to real robot. Through the application of this research method, it was confirmed that there was no significant difference in walking ability between flat and non-flat terrain, and the behavior of performing person detection in real time under limited experimental conditions was confirmed.