• Title/Summary/Keyword: Oat Hay

Search Result 33, Processing Time 0.02 seconds

Effect of condensed tannins from Ficus infectoria and Psidium guajava leaf meal mixture on nutrient metabolism, methane emission and performance of lambs

  • Pathak, A.K.;Dutta, Narayan;Pattanaik, A.K.;Chaturvedi, V.B.;Sharma, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1702-1710
    • /
    • 2017
  • Objective: The study examined the effect of condensed tannins (CT) containing Ficus infectoria and Psidium guajava leaf meal mixture (LMM) supplementation on nutrient metabolism, methane emission and performance of lambs. Methods: Twenty four lambs of ~6 months age (average body weight $10.1{\pm}0.60kg$) were randomly divided into 4 dietary treatments (CT-0, CT-1, CT-1.5, and CT-2 containing 0, 1.0, 1.5, and 2.0 percent CT through LMM, respectively) consisting of 6 lambs each in a completely randomized design. All the lambs were offered a basal diet of wheat straw ad libitum, oat hay (100 g/d) along with required amount of concentrate mixture to meet their nutrient requirements for a period of 6 months. After 3 months of experimental feeding, a metabolism trial of 6 days duration was conducted on all 24 lambs to determine nutrient digestibility and nitrogen balance. Urinary excretion of purine derivatives and microbial protein synthesis were determined using high performance liquid chromatography. Respiration chamber study was started at the mid of 5th month of experimental feeding trial. Whole energy balance trials were conducted on individual lamb one after the other, in an open circuit respiration calorimeter. Results: Intake of dry matter and organic matter (g/d) was significantly (p<0.05) higher in CT-1.5 than control. Digestibility of various nutrients did not differ irrespective of treatments. Nitrogen retention and microbial nitrogen synthesis (g/d) was significantly (p<0.01) higher in CT-1.5 and CT-2 groups relative to CT-0.Total body weight gain (kg) and average daily gain (g) were significantly (linear, p<0.01) higher in CT-1.5 followed by CT-1 and CT-0, respectively. Feed conversion ratio (FCR) by lambs was significantly (linear, p<0.01) better in CT-1.5 followed by CT-2 and CT-0, respectively. Total wool yield (g; g/d) was linearly (p<0.05) higher for CT-1.5 than CT-0. Methane emission was linearly decreased (p<0.05) in CT groups and reduction was highest (p<0.01) in CT-2 followed by CT-1.5 and CT-1. Methane energy (kcal/d) was linearly decreased (p<0.05) in CT groups. Conclusion: The CT supplementation at 1% to 2% of the diet through Ficus infectoria and Psidium guajava LMM significantly improved nitrogen metabolism, growth performance, wool yield, FCR and reduced methane emission by lambs.

Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population

  • Miguel, Michelle;Mamuad, Lovelia;Ramos, Sonny;Ku, Min Jung;Jeong, Chang Dae;Kim, Seon Ho;Cho, Yong Il;Lee, Sang Suk
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.642-651
    • /
    • 2021
  • Objective: This study aimed to determine the effects of different roughages in total mixed ration (TMR) inoculated with or without coculture of Lactobacillus acidophilus (L. acidophilus) and Bacillus subtilis (B. subtilis) on in vitro rumen fermentation and microbial population. Methods: Three TMRs formulations composed of different forages were used and each TMR was grouped into two treatments: non-fermented TMR and fermented TMR (F-TMR) (inoculated with coculture of L. acidophilus and B. subtilis). After fermentation, the fermentation, chemical and microbial profile of the TMRs were determined. The treatments were used for in vitro rumen fermentation to determine total gas production, pH, ammonianitrogen (NH3-N), and volatile fatty acids (VFA). Microbial populations were determined by quantitative real-time polymerase chain reaction (PCR). All data were analyzed as a 3×2 factorial arrangement design using the MIXED procedure of Statistical Analysis Systems. Results: Changes in the fermentation (pH, lactate, acetate, propionate, and NH3-N) and chemical composition (moisture, crude protein, crude fiber, and ash) were observed. For in vitro rumen fermentation, lower rumen pH, higher acetate, propionate, and total VFA content were observed in the F-TMR group after 24 h incubation (p<0.05). F-TMR group had higher acetate concentration compared with the non-fermented group. Total VFA was highest (p<0.05) in F-TMR containing combined forage of domestic and imported source (F-CF) and F-TMR containing Italian ryegrass silage and corn silage (F-IRS-CS) than that of TMR diet containing oat, timothy, and alfalfa hay. The microbial population was not affected by the different TMR diets. Conclusion: The use of Italian ryegrass silage and corn silage, as well as the inoculation of coculture of L. acidophilus and B. subtilis, in the TMR caused changes in the pH, lactate and acetate concentrations, and chemical composition of experimental diets. In addition, F-TMR composed with Italian ryegrass silage and corn silage altered ruminal pH and VFA concentrations during in vitro rumen fermentation experiment.

Effects of Italian ryegrass silage-based total mixed ration on rumen fermentation, growth performance, blood metabolites, and bacterial communities of growing Hanwoo heifers

  • Min-Jung Ku;Michelle A. Miguel;Seon-Ho Kim;Chang-Dae Jeong;Sonny C. Ramos;A-Rang Son;Yong-Il Cho;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.951-970
    • /
    • 2023
  • This study utilized Italian ryegrass silage (IRGS) - based total mixed ration (TMR) as feedstuff and evaluated its effects on rumen fermentation, growth performance, blood parameters, and bacterial community in growing Hanwoo heifers. Twenty-seven Hanwoo heifers (body weight [BW], 225.11 ± 10.57 kg) were randomly allocated to three experimental diets. Heifers were fed 1 of 3 treatments as follows: TMR with oat, timothy, and alfalfa hay (CON), TMR with 19% of IRGS (L-IRGS), and TMR with 36% of IRGS (H-IRGS). Feeding high levels of IRGS (H-IRGS) and CON TMR to heifers resulted in a greater molar proportion of propionate in the rumen. The impact of different TMR diets on the BW, average daily gain, dry matter intake, and feed conversion ratio of Hanwoo heifers during the growing period did not differ (p > 0.05). Furthermore, the blood metabolites, total protein, albumin, aspartate aminotransferase, glucose, and total cholesterol of the heifers were not affected by the different TMR diets (p > 0.05). In terms of rumen bacterial community composition, 264 operational taxonomic units (OTUs) were observed across the three TMR diets with 240, 239, and 220 OTUs in CON, L-IRGS, and H-IRGS, respectively. IRGS-based diets increased the relative abundances of genera belonging to phylum Bacteroidetes but decreased the abundances of genus belonging to phylum Firmicutes compared with the control. Data showed that Bacteroidetes was the most dominant phylum, while Prevotella ruminicola was the dominant species across the three TMR groups. The relative abundance of Ruminococcus bromii in the rumen increased in heifers fed with high inclusion of IRGS in the TMR (H-IRGS TMR). The relative abundance of R. bromii in the rumen significantly increased when heifers were fed H-IRGS TMR while P. ruminicola increased in both L-IRGS and H-IRGS TMR groups. Results from the current study demonstrate that the inclusion of IRGS in the TMR is comparable with the TMR containing high-quality forage (CON). Thus, a high level of IRGS can be used as a replacement forage ingredient in TMR feeding and had a beneficial effect of possibly modulating the rumen bacterial community toward mainly propionate-producing microorganisms.