• Title/Summary/Keyword: Oak

Search Result 1,584, Processing Time 0.034 seconds

Effects of Feeding Condensed Tannin-containing Plants on Natural Coccidian Infection in Goats

  • Hur, Sam N.;Molan, Abdul L.;Cha, Jang O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1262-1266
    • /
    • 2005
  • Twelve Korean native goats, spontaneously infected with mixed species of Eimeria were used to study the possible direct anticoccidial effect of feeding condensed tannin-containing plants on the production of Eimeria oocysts. The effects of feeding pine (Pinus densifora) needles, oak (Quercus acutissima) leaves and lucerne chaff on coccidia oocyst output were studied for a period of 10 days post-feeding. The results indicate that feeding fresh pine needles (40 g condensed tannins (CT) dry matter (DM)/day/goat) and oak leaves (40 g CT DM/day/goat) in combination with lucerne chaff had rapid anticoccidial activities in goats as demonstrated by a sharp decrease in oocyst production. Two days after feeding, the numbers of oocysts per gram of faeces (OPG) from the goats fed pine needles with lucerne chaff, and from goats fed oak leaves reduced by 40% and 44% compared to pre-feeding, respectively. On the sixth day after commencing feeding pine needles and oak leaves, the reduction was 81% and 72%, respectively. Ten days after feeding pine needles and oak leaves, the OPG was reduced by 93% and 85%, respectively compared to pre-feeding. Statistical analysis showed that feeding pine needles and oak leaves to goats naturally infected with coccidia significantly (p<0.001) reduced the numbers of oocysts compared to the control group fed lucerne chaff only. Four clinically important species of coccidia, Eimeria parva, Eimeria ninakohlyakimovae, Eimeria christenseni and Eimeria arloingi were identified in Korean native goats.

Response Surface Optimization of Phenolic Compounds Extraction From Steam Exploded Oak Wood (Quercus mongolica)

  • Jung, Ji Young;Ha, Si Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.809-827
    • /
    • 2017
  • Steam explosion was applied to extract phenolic compounds from oak wood (Quercus mongolica). The effects of three independent factors (ethanol concentration, extraction temperature and extraction time) on the total phenolic content, DPPH radical scavenging activity, and antimicrobial activity from the steam exploded oak wood were optimized using response surface methodology (RSM). The independent variables were coded at three levels and their actual values were selected on the basis of preliminary experimental results. The following optimal extraction conditions were selected: ethanol concentration 82.0%, extraction temperature $71.7^{\circ}C$, and extraction time 60.5 min for total phenolic content; ethanol concentration 78.3%, extraction temperature $70.3^{\circ}C$, and extraction time 57.6 min for DPPH radical scavenging activity; ethanol concentration 80.6%, extraction temperature $68.4^{\circ}C$, and extraction time 59.0 min for antimicrobial activity. The experimental values agreed with those were predicted within confidence intervals indicating the suitability of RSM in optimizing the ethanol extraction of phenolic compounds from the steam exploded oak wood. Under the optimized conditions, the experimental value of the total phenolic content was 111.8 mg GAE/g dry steam exploded oak wood, DPPH free radical scavenging activity was 65.7%, and antimicrobial activity was 17.0 mm, and those are reasonably close to the predicted values (109.2 mg GAE/g dry steam exploded oak wood, 62.3% and 15.9 mm, respectively).

Study on the Management System of Oak Coppice Forest on Forest Fire Site (산불피해지 참나무 맹아림 시업체계에 관한 연구)

  • Lim, Joo-hoon;Ji, Dong-hun;Lee, Young-geun;Lee, Myung-bo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.652-658
    • /
    • 2009
  • This study was conducted to investigate the growing characteristics of oak sprouts which have developed naturally after fire and to suggest proper management system which is adapted for oak coppice forest by controlling the number of sprouts. We examined 3 burned sites and 9 unburned pine stands in Kangwondo. In the early years sprouts of oak coppice forest grew very slowly after fire compare to common oak coppice forest. But they had over than 10 cm of DBH after 15years, their DBH reached 10 cm and entered the stage of regeneration period. We also examined the effect of sprouts control. In the case of Quercus mongolica, stumps with 1 or 3 sprouts grew 1.3 m faster than the ones in the control stand. For Q. variabilis, stumps with 2 sprouts grew 0.9 m faster. In conclusion small timber production is proper for the oak coppice forest stand which is developed on the forest fire site and pruning or fertilizing is needed to shorten the production cycle.

The Artificial Cultivation of Oudemansiella mucida on the Oak Sawdust Medium

  • Lee, Geon-Woo;Jaysinghe, Chandana;Imtiaj, Ahmed;Shim, Mi-Ja;Hur, Hyun;Lee, Min-Woong;Lee, Kyung-Rim;Kim, Seong-Hwan;Kim, Hye-Young;Lee, U-Youn;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.226-229
    • /
    • 2007
  • To produce fruiting bodies of Oudemansiella mucida, porcelain fungus, on the oak sawdust medium, additives suitable for the mycelial growth and fruiting body formation were screened. In general, the mycelial growth of the three strains of O. mucida used in this study have been good on oak sawdust mixed rice bran of $20{\sim}30%$. The mycelia incubated in potato dextrose broth for 7 days were inoculated on oak sawdust medium supplemented with various ratios of rice bran and incubated for 30 days at $25^{\circ}C$ in the dark condition until the mycelia of O. mucida fully colonized the media from top to bottom. Then, top surface of the media in the bottles were horizontally scratched with a spatula and filled with tap water for 3 hours. To induce the primordial formation of O. mucida, the bottles were transferred to the mushroom cultivating room under 12 hrs of light (350 lux) and dark condition with relative humidity of 95% at $17^{\circ}C$. The primordia of O. mucida were formed on the surface of oak sawdust media after 7 days of incubation. The mature fruiting bodies were observed 5 days after primordial formation. The fruiting bodies O. mucida were formed on oak sawdust medium mixed with 5 to 30% rice bran. However, abundant fruiting-bodies of O. mucida were produced in oak sawdust medium supplemented with 20% rice bran. This is the first report associated with an artificial fruiting body production of O. mucida in Korea.

The Fruiting Body Formation of Oudemansiella radicata in the Sawdust of Oak (Quercus variabilis) Mixed with Rice Bran

  • Shim, Jae-Ouk;Chang, Kwang-Choon;Kim, Tae-Hyun;Lee, Youn-Su;Lee, U-Youn;Lee, Tae-Soo;Lee, Min-Woong
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.30-33
    • /
    • 2006
  • To screen additives and their mixed ratio suitable for the mycelial growth and fruiting body formation of Oudemansiella radicata in the oak sawdust, additives such as rice bran, fermented soybean powder and wheat bran were used. Generally, the mycelial growth of O. radicata has been stable on oak sawdust mixed with rice bran of $5{\sim}20%$. In case that O. radicata was cultured for about 30 days at $22{\pm}1^{\circ}C$ under the illumination (350 lux) of 12 hours and moisture condition of $90{\pm}5%$, the primordia have been formed gradually from red-brown crusts covering the surface of oak sawdust media. Based on the experimental results from 9 strains of O. radicata, fruiting bodies were produced widely on oak sawdust medium mixed with rice bran of 5 to 30%. Even though fruiting bodies of O. radicata have been produced well on oak sawdust media mixed with rice bran, fruiting bodies of O. radicata were produced intensively on oak sawdust media mixed with rice bran of 10%. Therefore, this result will provide a basic information for commercial production of fruiting body of wild O. radicata. This result is the first report associated with an artificial fruiting body formation of O. radicata in Korea.

Studies on the Productivity and the Productive Structure of the Forests II. Comparison between the Productivity of Pinus densiflora and of Quercus mongolica Stands located near Choon-Chun City (삼림의 생산구조와 생산력에 대한 연구 II. 춘천지방의 소나무림과 신갈나무림의 비교)

  • 김준호
    • Journal of Plant Biology
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 1972
  • A comparison between the productivity of the evergreen needle pine(Pinus densiflora) and of the deciduous broad leaved oak(Quercus mongolica) stands, which is located near Choon-Chun city, Kangwon dist. have been established. The pine stand had a stand density of 938 trees per ha and oak stand had of 638 trees per ha. The diameter at breast height (D) and the height of tree (H) of each tree were measured in sample plot of 800$m^2$. Twelve standard sample trees chose from the sample area felled down, and then weighed the stem, branches and leaves separately, according to both the stratified clip technique and the stem analysis. The vertical distribution of photosynthetic system was arranged effectively for high productivity in the productive structure of both trees. The allometric relation between D2H and dry weight of stem (Ws), branches (Wb) and leaves (Wl) of pine were approximated by log Ws=0.6212 log D2H-0.5383 log Wb=0.4681 log D2H-0.7236 log Wl=0.2582 log D2H-5.1567 and those of oak were approximated by log Ws=0.5125 log D2H+0.0231 log Wb=0.5125 log D2H-0.3755 log Wl=0.8721 log D2H-2.9710 From the above, the standing crops of pine and oak in the sample area were estimated to be as much as 38.83ton and 48.11 ton of dry matter, above ground, per ha, respectively. Annual net production as the sum of the biomass newly formed during one year was appraised at 12.66ton/ha.yr in pine stand and at 8.74 ton/ha.yr in oak. The reason of high productivity of pine stand compared with oak might be resulted from much more about 4 times of the amount of the photosynthetic system, but less non-photosynthetic one of pine than those of oak. To increase the productivity of the forest stands investigated it was necessary to make densly a stand density, to be abundant in the inorganic nutrients and to preserve much water in soil to conserve the litters.

  • PDF

Total Utilization of Woody Biomass by Steam Explosion(II) -The Preparation of Carboxymethylcellulose from Exploded Wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) biomass의 종합적(綜合的) 이용(利用)(II) -폭쇄재(爆碎材)로부터 Carboxymethyl cellulose의 제조(製造)-)

  • Han, Sang-Yeol;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 1994
  • Steam explosion process is one of the most efficient, pretreatment method for the utilization of lignocellulosic biomass. The carbxymethyl-cellulose(CMC) was prepared with steam exploded wood(EXW), pine(Pinus densiflora) and oak(Quercus mongolica), by standard method using isopropyl alcohol and monochloroacetic acid. The range of water solubility of carboxymethylated pine exploded wood was 45.2~66.8 % and those of oak was 60.7~84.7 %. The degree of substitution(D.S) of carboxymethylated pine exploded wood was 0.11~0.33 and oak exploded wood was 0.48~0.76. The color of carboxymethylated pine and oak exploded wood was brown-black. When carboxymethylated EXW was purified by sulfuric acid, the yield of carboxymethylated wood was lower than non-treated one. However, the color was still brown-black although after delignification. In carboxymethylated EXM prepared after delignification, the water solubility and degree of substitution(D.S) of pine were 81.4~95.9 % and 0.71~0.79, and those of oak were 76.2~89.5 % and 0.79~1.05. The values were higher than non-treated. The degree of substitution of purified carboxymethylated wood prepared with delignified EXM, pine and oak were 0.50~0.71 and 0.70~0.88. The color of carboxymethylated wood was white. In carboxymethylated wood preparde after delignification of EXM, swelling ratio and water retention value of pine were 95.9~96.5 and 580.0~751.2, those of oak were 76.2~89.5 and 124.3~307.6.

  • PDF

Comparison of stand structure and growth characteristics between Korean white pine plantation and oak-dominated natural deciduous forest by thinning treatment

  • Lee, Daesung;Choi, Jungkee
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.85-98
    • /
    • 2022
  • Background: Korean white pine (Pinus koraiensis) is a major commercial species, and the importance of the oak trees (Quercus spp.) is increasing due to various factors such as environmental and ecological values. However, more information is required to clearly understand the growth characteristics of these species especially regarding thinning intensity. This study was performed to provide the basic information to develop the silvicultural guideline and field manual by analyzing tree and stand characteristics in line with thinning intensity in the Korean white pine plantation and oak-dominated natural deciduous forest. Results: Diameter at breast height (DBH) and volume changes by the thinning intensity in the Korean white pine plantation were significantly different from those in the oak-dominated deciduous natural forest. In particular, DBH distribution in the pine stand appeared that there were more large diameter trees as the thinning intensity was higher. DBH periodic annual increment (PAI) of the pine stand was higher as the thinning intensity was stronger and the growth period was shorter. This trend was similarly shown in the natural deciduous forest, but the amount of PAI was smaller than in pine stand. The volume PAI after thinning was not decreased over time. In each stand type, the PAI tended to be lower as stand density was higher. The volume PAI in the pine stand was significantly higher than that in the oak-dominated natural deciduous forest. Dead trees occurred the most in the unthinned plots of each stand type, and those were higher in the natural deciduous forest. Ingrowth trees were observed only in the natural deciduous forest, and its distribution was the lowest in unthinned plots; Korean white pine as ingrowth occurred the most frequently among many tree species. Conclusions: Different effects of thinning treatment on DBH and volume PAI, mortality, and ingrowth were observed for each stand. With respect to forest growth, Korean white pine plantation was superior to the oak-dominated natural deciduous forest. The results of this study offer fundamental information for the development of silvicultural guidelines for Korean white pine plantations and oak-dominated natural deciduous forests in Korea.

Carbon Storage of Natural Pine and Oak Pure and Mixed Forests in Hoengseong, Kangwon (횡성지역 천연 소나무와 참나무류 순림 및 혼효임분의 탄소 저장량 추정)

  • Lee, Sue Kyoung;Son, Yowhan;Noh, Nam Jin;Heo, Su Jin;Yoon, Tae Kyung;Lee, Ah Reum;Sarah, Abdul Razak;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.772-779
    • /
    • 2009
  • This study was conducted to estimate the carbon (C) contents in pure and mixed stands of pine (Pinus densiflora) and oak (Quercus spp.) trees for establishing the C inventory of forest ecosystems. A total of fifteen 20 m${\times}$20 m pure and mixed stands of pine and oak trees were chosen in natural forests in Hoengseong, Kangwon based on the basal area of all trees ${\geq}$ 5 cm DBH: three of 95% of pine and 5% oak trees [pine stand], three of 100% of oak trees [oak stand], and nine of 20 to 70% of pine and 80 to 30% of oak trees [mixed stand]. To estimate C contents in the study stands, biomass in vegetation, forest floor and coarse woody debris (CWD) were calculated and C concentrations in vegetation, forest floor, CWD and soil (0-30 cm) were analyzed. There was no significant difference in vegetation C contents among the stands; 147.6 Mg C/ha for the oak stand, 141.4 Mg C/ha for the pine stand and 115.8 Mg C/ha for the mixed stand. Forest floor C contents were significantly different among the stands (p<0.05); 12.7 Mg/ha for the pine stand, 9.9 Mg/ha for the oak stand, and 8.4 Mg/ha for the mixed stand. However, CWD C contents were not significantly different among the stands (p>0.05); 2.2 Mg/ha for the mixed stand, 1.7 Mg/ha for the oak stand, and 1.1 Mg/ha for the pine stand. Soil C contents up to 30 cm depth were not significantly different among the study stands; 44.4 Mg C/ha for the pine stand, 41.6 Mg C/ha for the mixed stand, and 33.3 Mg C/ha for the oak stand. Total ecosystem C contents were lower in the mixed stand than those in the pure stands, because vegetation C contents which occupied almost total ecosystem C contents were lower in the mixed stand than those in the pure stands; 199.6 Mg C/ha for the pine stand, 192.5 Mg C/ha for the oak stand and 169.1 Mg C/ha for the mixed stand. Lower vegetation C contents in the mixed stand might be influenced by interspecific competition between pine and oak trees and intraspecific competition among the oak trees resulted from high stand density. We suggest that forest management such as thinning to enhance C storage is indispensible for minimizing the competition in forest ecosystems.

Studies on Improvement of Quality Wine of "Vitis amurensis RUPRECHT" ("개량머루" 과실주의 품질향상에 관한 연구)

  • Lee, B.Y.;Lee, Y.C.;Jung, H.W.;Lim, J.W.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2007
  • New Wild Grape berry weighs approximately 3.7g, which is one fourth of the weight of the general grape wine (12.2g). The pH of New Wild Grape wine is around 3.34, which is lower by 0.3 than that (3.62) of general grape wine. It contains higher organic acids, so it has stronger sour taste. The sugar content of New Wild Grape is 17° Brix, which is higher than that (15° Brix) of general grape wine. The color of New Wild Grape is blackish, owing to the lower lightness, redness, and yellowness compared with those of general grape wine. Depending on the mixing with or without oak tree, there is little difference in the pH, organic acid, reducing sugar, and amount of alcohol after ripening for 1 year. In taste, New Wild Grape wine mixing with oak tree is evaluated better than that of the wine without oak tree. Especially, in the case of the wine mixing with oak tree's sawdust, the quality in color, taste, and smell became improved. After fermentation, the pH of New Wild Grape Wine ripened with oak tree charcoal increased from 3.82 to 3.86, as it gets more oak tree charcoal, and the organic acid decreased from 0.91㎖ to 0.86㎖. However, there is no difference in alcohol amount. Lightness in color tended to be reduced, whereas redness tended to be increased. Adding 3% of oak tree charcoal made the taste and smell improved. When fermenting New Wild Grape Wine with mixing 1% of oak tree's sawdust or 3% of oak tree charcoal, there is little difference in the pH and the organic acid, whereas there is a little difference in those of New Wild Grape Wine without addition of oak tree charcoal. As the addition of oak tree charcoal increased, the lightness and redness became higher. When fermenting New Wild Grape Wine with mixing 1% of oak tree's sawdust or 3% of oak tree charcoal in oak tree barre, the taste became improved.