• Title/Summary/Keyword: OTSU

Search Result 148, Processing Time 0.031 seconds

Multilevel Threshold Selection Method (다중 임계값 결정기법)

  • Seo, Seok-Tae;Lee, In-Geun;Gwon, Sun-Hak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.283-286
    • /
    • 2007
  • 임계값을 이용한 영상 분할은 대표적인 영상 분할 기법으로 Otsu의 임계값 결정법, Fuzzy 엔트로피를 이용한 H&W의 기법 및 Clustering을 이용한 Kwon의 기법 등 많은 방법이 있다. 대부분의 임계값 결정 기법은 영상에서 얻어진 빈도수 히스토그램의 분석을 통해서 임계값을 결정한다. 특히 Otsu의 임계값 결정 기법은 빈도수 히스토그램의 분산을 최대화하는 방법으로 임계값을 결정하는 빈도수 히스토그램에 기반한 대표적 기법이다. 하지만 영상 기술이 발전함에 따라서 하나의 임계값으로부터 영상을 이진화 하는 기법은 효용성이 떨어지고 있다. 따라서 다중의 임계값을 결정하는 효과적인 방법이 필요하다. 본 논문에서는 그레이 레벨간의 관계성을 파악하고 이러한 관계성으로부터 다중의 임계값을 결정하는 기법을 제안한다. 제안된 기법의 효용성은 모의실험에서 다중 임계값을 사용한 분할영상을 통해서 보인다.

  • PDF

A Fast Thresholding Method For Pattern Matching (패턴매칭을 위한 고속 스레쉬홀딩법)

  • Li, Zhe-Xue;Kim, Sang-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.126-128
    • /
    • 2006
  • For pattern matching, an object image should be segmented and analyzed for the first time. Thresholding is a fundamental approach to segmentation that utilizes a significant degree of pixel popularity or intensity. Otsu's thresholding is one of the most veil-known methods proposed in the literature. However, the method has a disadvantage of repeatedly searching the optimal thresholds for the entire region. To overcome this problem, a number of methods have been proposed. In this paper, we propose a simple and fast thresholding method of finding multi-level threshold values by extending the Otsu's method. Our experimental results for the benchmak images show a possibility that the proposed method could be used efficiently for pattern matching.

  • PDF

Recent Progress of Membrane Technology and its New Application for Water Treatment

  • Hiroyuki, Yamamura;Yoshinari, Fusaoka;Masaru, Kurihara
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.81-94
    • /
    • 1998
  • Nowadays, membrane separation such as reverse osmosis (RO) and ultrafiltration (UF) play an important role in the industrial separation technology. Among desalination technologies available today, reverse osmosis is usually the most economical process for wide range of water salinity. Main applications include production of high purity water, desalination of seawater and brackish water for a drinking water supply, treatment of waste water for environmental protection, and recovery of precious materials from industrial waste water. In this paper, we will mention membrane performance and these practical use focused on reverse osmosis membranes and ultrafiltration membranes recently developed by Toray.

  • PDF

New Vehicle License Plates Extraction Using Morphological Characteristics and Intensity Variation (형태학적 특징과 명암 변화를 이용한 신 차량 번호판 추출)

  • Han, Kun-Young;Han, Soo-Whan;Jang, Kyung-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.123-127
    • /
    • 2008
  • 본 논문에서는 2006년 11월 신 차량 번호판 등장 이후 꾸준히 증가하고 있는 흰색 번호판 차량에서 흰색 번호판 추출에 관한 연구를 수행한다. 먼저 입력된 차랑 영상을 그레이 레벨로 변환 후, 국부적으로 밝기 보정을 수행하고, Otsu 판별식을 이용해 이진화 한다. 이진화 된 차량 영상에서 번호판 특성을 이용하며 라인 구조요소에 의한 침식연산과 채움 연산을 적용한다. 이후, 수평 투영으로 명암 변화가 심한 후보 영역을 찾고, 다시 수직 투영을 하여 일정구간에서 흰색의 값이 가장 많이 나타나는 구간을 찾는다. 마지막으로 번호판의 형태학적 특징을 이용해 번호판을 추출한다. 제안한 알고리즘을 적용한 결과 번호판 크기가 일정하지 않거나 불규칙한 조명 상태에서도 번호판 추출이 가능하였다.

  • PDF

Segmentation Performance Analysis of the Otsu Algorithm for Spent Nuclear Fuel Cladding Image According to Morphological Operations

  • Jee A Baik;Jun Won Choi;Jung Jin Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.301-311
    • /
    • 2024
  • Hydride analysis is required to assess the mechanical integrity of spent nuclear fuel cladding. Image segmentation, which is a hydride analysis method, is a technique that can analyze the orientation and distribution of hydrides in cladding images of spent nuclear fuels. However, the segmentation results varied according to the image preprocessing. Inaccurate segmentation results can make hydride difficult to analyze. This study aims to analyze the segmentation performance of the Otsu algorithm according to the morphological operations of cladding images. Morphological operations were applied to four different cladding images, and segmentation performance was quantitatively compared using a histogram, between-class variance, and radial hydride fraction. As a result, this study found that morphological operations can induce errors in cladding images and that appropriate combinations of morphological operations can maximize segmentation performance. This study emphasizes the importance of image preprocessing methods, suggesting that they can enhance the accuracy of hydride analysis. These findings are expected to contribute to the advancements in integrity assessment of spent nuclear fuel cladding.

A Comparative Study of Reservoir Surface Area Detection Algorithm Using SAR Image (SAR 영상을 활용한 저수지 수표면적 탐지 알고리즘 비교 연구)

  • Jeong, Hagyu;Park, Jongsoo;Lee, Dalgeun;Lee, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1777-1788
    • /
    • 2022
  • The reservoir is a major water supply source in the domestic agricultural environment, and the monitoring of water storage of reservoirs is important for the utilization and management of agricultural water resource. Remote sensing via satellite imagery can be an effective method for regular monitoring of widely distributed objects such as reservoirs, and in this study, image classification and image segmentation algorithms are applied to Sentinel-1 Synthetic Aperture Radar (SAR) imagery for water body detection in 53 reservoirs in South Korea. Six algorithms are used: Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), and Chan-Vese (CV), and the results of water body detection are evaluated with in-situ images taken by drones. The correlations between the in-situ water surface area and detected water surface area from each algorithm are NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, and CV 0.9736, and the larger the scale of reservoir, the higher the linear correlation was. WS showed low recall due to the undetected water bodies, and NN, SVM, and RF showed low precision due to over-detection. For water body detection through SAR imagery, we found that aquatic plants and artificial structures can be the error factors causing undetection of water body.

Automatic Multithreshold Selection Method (자동적인 여러 임계값 결정 기법)

  • Lee, Han;Park, Rae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1371-1374
    • /
    • 1987
  • This paper presents a new automatic multithreshold selection method which is based on the threshold selection method proposed by Otsu. This method can overcome some of limitations of the Otsu's method. An optimal threshold is selected by the new criterion so as to maximize the separability in all subregions. To get multiple thresholds, the procedure may be recursively applied to the resultant classes which are determined by the proposed evaluation measure.

  • PDF

A Segmentation Method for Counting Microbial Cells in Microscopic Image

  • Kim, Hak-Kyeong;Lee, Sun-Hee;Lee, Myung-Suk;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.224-230
    • /
    • 2002
  • In this paper, a counting algorithm hybridized with an adaptive automatic thresholding method based on Otsu's method and the algorithm that elongates markers obtained by the well-known watershed algorithm is proposed to enhance the exactness of the microcell counting in microscopic images. The proposed counting algorithm can be stated as follows. The transformed full image captured by CCD camera set up at microscope is divided into cropped images of m$\times$n blocks with an appropriate size. The thresholding value of the cropped image is obtained by Otsu's method and the image is transformed into binary image. The microbial cell images below prespecified pixels are regarded as noise and are removed in tile binary image. The smoothing procedure is done by the area opening and the morphological filter. Watershed algorithm and the elongating marker algorithm are applied. By repeating the above stated procedure for m$\times$n blocks, the m$\times$n segmented images are obtained. A superposed image with the size of 640$\times$480 pixels as same as original image is obtained from the m$\times$n segmented block images. By labeling the superposed image, the counting result on the image of microbial cells is achieved. To prove the effectiveness of the proposed mettled in counting the microbial cell on the image, we used Acinetobacter sp., a kind of ammonia-oxidizing bacteria, and compared the proposed method with the global Otsu's method the traditional watershed algorithm based on global thresholding value and human visual method. The result counted by the proposed method shows more approximated result to the human visual counting method than the result counted by any other method.

Detection of Wildfire-Damaged Areas Using Kompsat-3 Image: A Case of the 2019 Unbong Mountain Fire in Busan, South Korea

  • Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Forest fire is a critical disaster that causes massive destruction of forest ecosystem and economic loss. Hence, accurate estimation of the burned area is important for evaluation of the degree of damage and for preparing baseline data for recovery. Since most of the area size damaged by wildfires in Korea is less than 1 ha, it is necessary to use satellite or drone images with a resolution of less than 10m for detecting the damage area. This paper aims to detect wildfire-damaged area from a Kompsat-3 image using the indices such as NDVI (normalized difference vegetation index) and FBI (fire burn index) and to examine the classification characteristics according to the methods such as Otsu thresholding and ISODATA(iterative self-organizing data analysis technique). To mitigate the salt-and-pepper phenomenon of the pixel-based classification, a gaussian filter was applied to the images of NDVI and FBI. Otsu thresholding and ISODATA could distinguish the burned forest from normal forest appropriately, and the salt-and-pepper phenomenon at the boundaries of burned forest was reduced by the gaussian filter. The result from ISODATA with gaussian filter using NDVI was closest to the official record of damage area (56.9 ha) published by the Korea Forest Service. Unlike Otsu thresholding for binary classification,since the ISODATA categorizes the images into multiple classes such as(1)severely burned area, (2) moderately burned area, (3) mixture of burned and unburned areas, and (4) unburned area, the characteristics of the boundaries consisting of burned and normal forests can be better expressed. It is expected that our approach can be utilized for the high-resolution images obtained from other satellites and drones.

A shot change detection algorithm based on frame segmentation and object movement (프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘)

  • Kim, Seung-Hyun;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a shot change detection algorithm by using frame segmentation and the object changes among moving blocks. In order to detect the rapid moving changes of objects between two consecutive frames, the moving blocks on the diagonal are defined, and their histograms are calculated. When a block of the current frame is compared to the moving blocks of the next frame, the block histograms are used and the threshold of a shot change detection is automatically adjusted by Otsu's threshold method. The proposed algorithm was tested for the various types of color or gray videos such as films, dramas, animations, and video tapes in National Archives of Korea. The experimental results showed that the proposed algorithm could enhance the detection rate when compared to the studied methods that use brightness, histogram, or segmentation.