• 제목/요약/키워드: OTFTs (Organic Thin Film Transistors)

검색결과 134건 처리시간 0.021초

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • 유태희;김정혁;상병인;최원국;황도경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Highly Efficient Multi-Functional Material for Organic Light-Emitting Diodes; Hole Transporting Material, Blue and White Light Emitter

  • Kim, Myoung-Ki;Kwon, Jong-Chul;Hong, Jung-Pyo;Lee, Seong-Hoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2899-2905
    • /
    • 2011
  • We have demonstrated that TPyPA can be used as an efficient multi-functional material for OLEDs; hole transporting material (HTL), blue and white-light emitter. The device based on TPyPA as the HTL exhibited an external quantum efficiency of 1.7% and a luminance efficiency of 4.2 cd/A; these values are 40% higher than the external quantum efficiency and luminance efficiency of the NPD-based reference device. The device based on TPyPA as a blue-light emitter exhibited an external quantum efficiency of 4.2% and a luminance efficiency of 5.3 $cdA^{-1}$ with CIE coordinates at (0.16, 0.14), the device based on TPyPA as a white-light emitter exhibited an external quantum efficiency of 3.2% and a luminance efficiency of 7.7 $cdA^{-1}$ with CIE coordinates at (0.33, 0.39). Also, TPyPA-based organic solar cell (OSC) exhibited a maximum power conversion efficiency of 0.35%. TPyPA-based organic thin-film transistors (OTFTs) exhibited highly efficient field-effect mobility (${\mu}_{FET}$) of $1.7{\times}10^{-4}cm^2V^{-1}s^{-1}$, a threshold voltage ($V_{th}$) of -15.9 V, and an on/off current ratio of $8.6{\times}10^3$.

A First Synthesis and Physical Properties of Asymmetric Anthracenes-Thiophenes Bridged with Ethylene

  • Hwang, Min Ji;Park, Ji Hee;Jeong, Eun Bin;Kang, Il;Lee, Dong Hoon;Park, Chan Eon;Singh, O.M.;Choi, HoJune;Kim, Yoon-Hi;Yoon, Yong Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3810-3816
    • /
    • 2012
  • Here we report our recent result of a new semiconductor material, which has an asymmetric structure. The synthesized molecules consist of anthracene and thiophene connected by bridged ethylene and substituted with hexyl or dodecyl groups as pendants. The semiconductors were synthesized using a McMurry coupling reaction between anthracene-2-carbaldehyde and corresponding 5-hexyl(or dodecyl)thiophene-2-carbaldehyde. A first investigation of synthesized asymmetry AVHT (9a) and AVDT (9b) for the physical properties showed that they have high oxidation potential and thermal stability. The devices prepared by using AVHT (9a) and AVDT (9b) showed the mobility of $2.6{\times}10^{-2}cm^2/Vs$ and $4.4{\times}10^{-3}cm^2/Vs$, respectively, in solution processed OTFTs.

Integration of the 4.5

  • Lee, Sang-Yun;Koo, Bon-Won;Jeong, Eun-Jeong;Lee, Eun-Kyung;Kim, Sang-Yeol;Kim, Jung-Woo;Lee, Ho-Nyeon;Ko, Ick-Hwan;Lee, Young-Gu;Chun, Young-Tea;Park, Jun-Yong;Lee, Sung-Hoon;Song, In-Sung;Seo, O-Gweon;Hwang, Eok-Chae;Kang, Sung-Kee;Pu, Lyoung-Son;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.537-539
    • /
    • 2006
  • We developed an 4.5" $192{\times}64$ active matrix organic light-emitting diode display on a glass using organic thin-film transistor (OTFT) switching-arrays with two transistors and a capacitor in each sub-pixel. The OTFTs has bottom contact structure with a unique gate insulator and pentacene for the active layer. The width and length of the switching OTFT is $800{\mu}m$ and $10{\mu}m$ respectively and the driving OTFT has $1200{\mu}m$ channel width with the same channel length. On/off ratio, mobility, on-current of switching OTFT and on-current of driving OTFT were $10^6,0.3{\sim}0.5\;cm^2/V{\cdot}sec$, order of 10 ${\mu}A$ and over 100 ${\mu}A$, respectively. AMOLEDs composed of the OTFT switching arrays and OLEDs made using vacuum deposition method were fabricated and driven to make moving images, successfully.

  • PDF