• Title/Summary/Keyword: OSL연대

Search Result 67, Processing Time 0.021 seconds

The paleo-shoreline and formation age of the 1st marine terrace in Heunghae-eup Pohang City, South Korea : evaluation of the mode and rate of the late Quaternary tectonism (I) (포항시 흥해읍 일대 해안단구 제1면의 구정선 고도와 형성 시기 - 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(I) -)

  • Shin, Jae Ryul;Park, Kyung Geun
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.3
    • /
    • pp.703-713
    • /
    • 2016
  • This study documents the altitude of paleo-shoreline and formation age of the $1^{st}$ marine terrace emerged around Heunghae-eup Pohang City (South Korea). As a result, the $1^{st}$ terrace representing 10 m of the paleo-shoreline was formed at MIS 5c around 100,000 BP and was influenced repetitive sedimentation of sea-wave till regression of MIS 5a. The result is recognized as a definite truth for the $1^{st}$ terrace in the eastern coast of the Korean peninsula based on synthetic reviews of previous studies and cross-validation of absolute age data. Furthermore, this study deduces a sea stand at MIS 5c from the geomorphological contrast method, but precise determination of paleo-shoreline of the $2^{nd}$ terrace should be required to estimate that of MIS 5c.

  • PDF

A Study on the Characteristics and Burial Age of Sediment Layers at Bukpyeong myeon, Haenam gun (해남 북평면 퇴적층의 특성과 매몰 연대에 대한 연구)

  • Shin, Won Jeong;Yang, Dong Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.41-55
    • /
    • 2016
  • The granulometric characteristics and chemical composition of the samples from the Bukpyeong myeon, Hainam gun, Jeollanam do were analyzed in this study. The samples were collected from the outcrop of coastal area where the height is about 30m. The burial age of the sediments also estimated by OSL(Optically Stimulated Luminescence) method. The origin and forming processes of the samples are not clear in this stage as limited number of evidences can be found. However it is suggested that the samples are not aeolian deposits originated from chinese loess by the chemical analysis. The mean diameter of samples were $5{\sim}6{\varphi}(silt)$ and are increased slightly downwards. The samples also well sorted. The samples have been heavily weathered by the chemical alteration index. The value of CIA increase downward rapidly at the upper part of outcrop, then stabilized afterwards. The vertical concentration changes ratio of cations varies; Si increases downwards while Fe, Ti, K and Mg decrease. There are fluctuation in concentration ratio of Na and Ca with increasing depth. The burial age of sample from upper part are estimated as $104.52{\pm}4.45ka\;BP$, while that of lower part are $136.10{\pm}6.52ka\;BP$, and they fall in to last part of MS6. The deposition rate for this site is found about 0.017mm/year. The uplift rate of the site is supposed to be 0.24~0.26m/ka with assumption of palaeo-sea level of +6m. However the origin of the sediment deposits should be explored and cleared.

Formation and Recent Changes of the Okjukdong Dunefield, Daecheong Island (대청도 옥죽동 사구의 형성과 최근의 변화)

  • Choi, Kwang Hee;Kong, Hak-Yang
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.4
    • /
    • pp.91-101
    • /
    • 2017
  • The Okjukdong dune in Daecheong Island attracts national attention because of its unique landscape that is not covered by vegetation. However, there has been little knowledge on the timing of the dune formation, associated wind regime, and conservational strategies. In this study, we used OSL dating and grain size analyses to reveal the history of the dune development. In addition, we analyzed the wind regime in the dunefield which is surrounded by artificial coastal forest. The fine sand at Okjukdong underlain by a colluvial gravel layer indicates that the dune has been developed since at least 5 ka. Aeolian sands were found to be deposited around 700 years ago. The dunefield appears to have been severely eroded 30~60 years ago. The dune landscape has been destroyed after constructing a windbreak forest around the dunefield. The sand seems to be moving south and north with the season.

Characteristics and depositional environment of paleosol layers developed on top of the terrace in the Jeongdongjin area, East Coast, Korea (강릉 정동진 지역 단구 고토양층의 특징과 퇴적 환경)

  • Yi, Seon-Bok;Lee, Yong-Il;Lim, Hyun-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.1-24
    • /
    • 2009
  • Paleosol layers lying on top of the terrace in Jeongdongjin area appear to have been deposited under generally well-drained condition with periodic waterlogging. From a 4.5m-long profile observed, a total of 6 stratigraphic units were identified. Grain-size analysis indicates the dominance of silty and clay materials with some portions with high sand content. Major mineralogical elements are quartz, feldspar, mica and chlorite. Geo-chemical composition shows little change throughout the stratigraphy with some fluctuation in chemical weathering index. Marked increase in magnetic susceptibility is recognizable where stratigraphic unit changes. Soil- wedge layer is developed around 50cm below the surface with concentration of grains of AT tephra (c. 25,000 BP). An OSL date of c. 110,000 BP was obtained from a sand layer lying below the paleosol.

  • PDF

Incision and Geomorphic Development of Rivers on Eastern and Western Sides of the Northern Sobaek Mountains (소백산맥 북부 영동영서 하천의 하각과 지형 발달)

  • Cho, Young-Dong;Park, Chung-Sun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.27-40
    • /
    • 2017
  • This study tries to analyze topographic distribution and characteristics of as well as formative age and incision rate of fluvial terraces in Danyang River on western side and Geum River on eastern side of the northern Sobaek Mountains and to estimate geomorphic development during the late Quaternary in the mountains regarded as one of the uplift axes in the Korean Peninsula. OSL age dating shows that the fluvial terrace I with an altitude above riverbed of approximately 7~13 m in Danyang River has a formative age of approximately 18 ka (MIS 2) and incision rate in the river is approximately 0.156~0.194 m/ka based on the age. Altitudes above riverbed of the fluvial terrace I in Geum River range from approximately 7 to 14 m and the terrace is thought to be older than 70 ka based on age result from aeolian sediments above the terrace deposits, suggestive of an incision rate less than approximately 0.10 m/ka. These results indicate lower uplift rate in the northern Sobaek Mountains than in the Taebaek Mountains. Moreover, it can be suggested that the northern Sobaek Mountains has experienced asymmetric uplift during the late Quaternary, because the river on western side of the northern Sobaek Mountains shows greater uplift rate than the eastern side river does. Low incision rate in Geum River can be attributed to low altitude of the river basin with little difference in altitude from the base level as well as to gentle river slope due to influence of Nakdong River.

Vertically Development Processes of Jangho-ri Coastal Dune, West Coast of Korea (고창 장호리 해안사구의 수직 발달 과정 연구)

  • Han, Min;Kim, Jin Cheul;Yang, Dong-Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.79-92
    • /
    • 2016
  • Samples from two boreholes of coastal dune field at Jangho-ri coast, Gochang was studied. These were analyzed by grain size analysis geochemical analysis, and the application of OSL dating method to understand the development during the Holocene. The boreholes SB8 and SB9 were classified into three different sedimentary layers by their mean grain size and geochemical characteristics. The results revealed that the upper sand layer is equivalent to the present coastal dune layer, which developed since 1,200 years ago; the silt layer in the middle to the dune slack or lagoon sedimentation layer, which developed between 1,200 and 6,000 years ago; and the sand layer at the bottom to the paleo coastal dune that developed between 6,000 and 7,000 years ago. It was proposed that the forming material of current coastal dune was supplied from the sandy flat in coastal area, while the middle silt layer was supplied from the weathered soil of a bed rock by the comparison with material of surrounding area. In the case of coastal dune, concentrated layer of sands were identified which were buried about 300 and 1,200 years ago, which is identified as the little ice age. This study confirmed the development of Jangho-ri coastal dunes after Holocene Climate Optimum period, and it is likely to assist in the understanding of coastal dunes development.

Incision Rate Distribution of Streams on the Northern Part of the Sobaek Mountain Range (소백산맥 북부 지역 하천의 하각률 분포)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • This study tried to reveal incision rate distribution of streams on the northern part of the Sobaek Mountain Range with OSL age dating and geomorphic analysis, and factors influencing on the distribution were also discussed. With results from the previous studies, a total of 10 sites from 7 streams in the study area showed the rates ranging from 0.220 m/ka to 0.297 m/ka. Namhan-gang and Geum-cheon indicated the highest and lowest rates, respectively. Both sides in the northern section in the study area showed similar rates, while the western side in the middle section and the eastern side in the southern section showed higher rates than the other sides. Higher rates were also found from the eastern and northern sides where the Range runs N-S and E-W directions, respectively. Certain relationships with altitude and distance from the divide can be recognized from the rates and may be attributed to active incision with altitude and location of the uplift axis near the present divide. The rates on granite and sedimentary rock were higher than those on metamorphic rock, indicating that bedrock type is one of the important factors influencing on stream incision. Tectonic movement seemed to play some roles in the rates, because areas with lineaments showed lower rates. This study suggests that incision rate distribution of streams on the northern part of the Sobaek Mountain Range reflects various local geomorphic and geologic conditions.

Volcanological History of the Baengnokdam Summit Crater Area, Mt. Halla in Jeju Island, Korea (제주도 한라산 백록담 일대의 화산활동사)

  • Ahn, Ung San;Hong, Sei Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.221-234
    • /
    • 2017
  • The Baengnokdam, the summit crater of Mt. Halla, is one of the representative geosites of World Natural Heritage and Global Geopark in Jeju Island. The crater is marked by two distinctive volcanic lithofacies that comprise: 1) a trachytic lava dome to the west of the crater and 2) trachybasaltic lava flow units covering the gentle eastern slope of the mountain. This study focuses on understanding the formative process of this peculiar volcanic lithofacies association at the summit of Mt. Halla through field observation and optically stimulated luminescence (OSL) dating of the sediments underlying the craterforming volcanics. The trachyte dome to the west of the crater is subdivided into 3 facies units that include: 1) the trachyte breccias originating from initial dome collapse, 2) the trachyte lava-flow unit and 3) the domal main body. On the other side, the trachybasalt is subdivided into 2 facies units that include: 1) the spatter and scoria deposit from the early explosive eruption and 2) lava-flow unit from the later effusion eruption. Quartz OSL dating on the sediments underlying the trachyte breccias and the trachybasaltic lava-flow unit reveals ages of ca. 37 ka and ca. 21 ka, respectively. The results point toward that the Baengnokdam summit crater was formed by eruption of trachybasaltic magma at about 19~21 ka after the trachyte dome formed later than 37 ka.

Morphological Correlation and Chronology of Lower Terrace Formations of Southeastern Coast of Korea (한국 남동해안 저위단구 퇴적층의 지형대비 및 형성시기 고찰)

  • Choi, Weon-Hack;Kim, Ju-Yong
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2005.10a
    • /
    • pp.48-54
    • /
    • 2005
  • Terrace morphology is so conspicuous in the south eastern coastal areas. Coastal terraces can be divided into 5 main surfaces, including beach and coastal alluvial plain(AP, $4{\sim}5m$), Low Terrace(LT, 8 $^{\sim}$ 25m), Middle Terrace(MT, 36 $^{\sim}$ 55m), High Terrace(HT, 63 $^{\sim}$ 86m) and upper High Terrace(uHT, above 90m). Among them Lower Terrace Formation is distributed between 8m and 20m in altitude. Both Tephra deposited of LT2 formation and OSL datings of sand layers in LT 2 and LT 3 Formations support the age of the LT 2 formation is MIS 5d or 5e, most probably 5e. The age of LT 3 is interpreted MIS 5a, based on tephra production in organic mud layers and OSL dating of sand deposits just above the beach pebbles of the LT 3. Particularly the transgression, possibly equivalent to the well-known Monastirrian episode in the Mediterranean Sea.

  • PDF