• Title/Summary/Keyword: OSHA 42 method

Search Result 5, Processing Time 0.016 seconds

Assessment of total is ocyanates by OSHA and NIOSH analytical methods : accuracy and precision and airborne concentrations by process (NIOSH와 OSHA 측정 방법을 이용한 이소시아네이트류 발생 공정별 농도 분포 평가)

  • Kang, Hyoung Kyoung;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.1-18
    • /
    • 1999
  • The purpose of this study was to compare performances of two analytical methods, the OSHA 42 and the NIOSH 5522, of quantifying total isocyanates in air. These methods were compared in terms of accuracy and precision and the detection limits using four(4) spiked samples in each of four(4) concentration levels which ranged from 0.25 to 2.0 times of the ACGIH TLV-TWA. In addition, two methods were used to as sess airborne concentrations of total isocyanates at the following processes including autobody spray painting, furniture spray painting, polyurethane foaming, urethane adhesion, UV coating, and pigment mixing. The results of this study showed that the NIOSH 5522 method was better than the OSHA 42 method in terms of accuracy, precis ion, and detection limit for quantifying airborne total isocyanates. It was also clear that the NIOSH method was capable of detecting not only monomeric but also non-monomeric isocyanates. The results of air concentrations of total isocyanates among processes studied indicate that some processes may exceed the recommended level of isocyanates. In addition, to evaluate toxicological effects of total isocyanates, it is recommended to consider additive effects of isocyanates present in mixtures.

  • PDF

A Comparison of Sampling and Analytical Methods for Airborne Isocyanates (공기중 이소시아네이트류의 측정 및 분석방법에 관한 비교연구)

  • 변혜정;윤충식;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.32-42
    • /
    • 1996
  • This study was performed to evaluate accuracy and precision of filter method and impinger method for analyzin airborne isocyanates in mixture (2, 6-TDI, HDI, 2, 4-TDI, MDI). Filter method was performed using the OSHA Method 42 and impinger method using the NIOSH Method 5521. The samples were analyzed by high performance liquid chromatography-ultraviolet detector (HPLC-UVD). After the optimum operating conditions for each method were investigated, samples with various concentration levels were quantified at the conditions. The precision was expressed by the pooled coefficient of variation(C.V.) and the accuracy by overall accuracy. The results are summarized as follows: 1. The optimum condition of filter method was determined at 35/65 ACN/buffer (0.01 M ammonium acetate) in mobile phase. And in case of impinger method, it was at 30/70 ACN/buffer(0.2 M sodium acetate). The effect of concentrations of acetate on the separation of the peaks was not significant, but, the effect of ACN/buffer ratio was significant. 2. The correlation coefficients for the two methods were above 0.9 in all isocyanate compounds. Average recovery efficiencies for 2, 6-TDI, HDI, 2, 4-TDI and MDI in filter method were 92.4%, 102.6%, 87.3% and 101.0%, respectively. Those in impinger method were 106.6%, 106.7%, 99.0% and 103.6%, respectively. As a result, the recovery efficiency of impinger method was higher than those of filter method in analyzing isocyanate compounds. 3. The pooled coefficients of variations of the methods were slightly higher than expected. The overall accuracies of the methods were within $\pm 25%$ for each isocyanate compound. Since these results satisfy NIOSH criteria, the accuracy of the experiment is appropriate. 4. As seen above, impinger method is more efficient than filter method. But, there are many disadvantages in impinger method. Therefore, solid sorbent such as a glass fiber filter must be developed in order to have the high efficiency not less than that of impinger method in the future.

  • PDF

New Smoke Risk Assessment on Wood Treated with Silicone Compound (실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.16-27
    • /
    • 2019
  • A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

A Comparison of Collection Concentrations Based on Airborne Toluene Diisocyanates Measurement Methods (공기 중 Toluene diisocyanates 측정방법에 따른 포집농도 비교)

  • Park, Hyung-Sung;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.341-347
    • /
    • 2013
  • Objectives: The aim of this study is to investigate the differences in airborne TDI concentrations based on the filter collection method and liquid collection method and to compare airborne TDIs concentrations by sampling method change when using the filter collection method in the spray-painting process. Methods: For the sample measurement, the filter collection method(OSHA#42) and liquid collection method(NIOSH#5522) were used; for the sampling method, the full-period single sampling and full-period consecutive sampling methods were used. The samples were collected in spray-painting and drying process locations. Results: In all samples collected from the spray-painting and drying process locations through the filter collection and liquid collection methods, greater amounts of 2,6-TDI than 2,4-TDI were detected. When the TDI collection concentrations based on the sampling methods were compared, the concentrations of 2,4-TDI and 2,6-TDI collected by the consecutive sampling method were higher than the concentrations of 2,4-TDI and 2,6-TDI collected by the single sampling method for both the filter collection method and liquid collection method used in the spray-painting process. These differences were statistically significant. Conclusions: When TDI collection concentrations based on the sample measurement methods were compared, the concentration of 2,4-TDI and 2,6-TDI collected through the liquid collection method were higher than the concentrations of 2,4-TDI and 2,6-TDI collected by the filter collection method, and the differences were statistically significant. In the drying process, no difference was shown in the collection concentrations of 2,4-TDI and 2,6-TDI with the two measurement methods.

Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry (유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF