• Title/Summary/Keyword: OSCs

Search Result 42, Processing Time 0.016 seconds

Quantitative Estimation of Precipitation Scavenging and Wind Dispersion Contributions for PM10 and NO2 Using Long-term Air and Weather Monitoring Database during 2000~2009 in Korea (장기간 대기오염 및 기상측정 자료 (2000~2009)를 이용한 PM10과 NO2의 강수세정 기여율과 바람분산 기여율의 정량적 추정연구)

  • Lim, Deuk-Yong;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.325-347
    • /
    • 2012
  • Long-term air and weather data monitored during the period of 2000 to 2009 were analyzed to quantitatively estimate the precipitation scavenging and wind dispersion contributions of ambient $PM_{10}$ and $NO_2$ in Korea. Both air pollutants and meteorological data had been respectively collected from 120 stations by the Ministry of Environment and from 20 weather stations by the Korea Meteorological Administrations in all parts of Korea. To stochastically identify the relation between a meteorological factor and an air pollutant, we initially defined the SR (scavenging ratio) and the DR (dispersion ratio) to separately calculate the precipitation and wind speed effects on the removal of a specific air pollutant. We could then estimate the OSC (overall scavenging contribution) and the ODC (overall dispersion contribution) with considering sectoral precipitation and wind speed probability density distributions independently. In this study, the SRs for both $PM_{10}$ and $NO_2$ were generally increased with increasing the amounts of precipitation and then the OSCs for $PM_{10}$ and $NO_2$ were estimated by 22.3% and 15.7% on an average in Korea, respectively. However, the trend of the DR was quite different from that of SR. The DR for $PM_{10}$ was increased with increasing wind speed up to 2.5 m/s and further the DR for $NO_2$ showed a minimum in the range of $1<WS{\leq}1.5$. The ODCs for $PM_{10}$ and $NO_2$ were estimated by 14.9% and 1.0% in Korea, respectively. Finally, we have also provided an interesting case study observed in Seoul.

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.