• Title/Summary/Keyword: ORP

Search Result 228, Processing Time 0.021 seconds

Improvement of Water Quality in Shrimp Aquaculture Farms of Southwestern Coastal Area of Korea (서남해역 새우 양식장의 수질현황과 수질개선방안)

  • Kim Do-Hee;Lee Ha-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.159-163
    • /
    • 2004
  • This study was performed to estimate the water quality of pH, salinity, dissolved oxygen, ammonium and sulfur hydroxides of sediment in shrimp aquaculture farms of Southwestern coastal of Korea from June to September, 2003. We surveyed the status of water quality and achieved the improve water and sediment quality to restraint the production of ammonium and sulfur hydroxides from sediment of shrimp aquaculture farms. The concentrations of dissolved oxygen increased from noon to the evening for 6 hour and decreased to 2.98 ppm at six o'clock in the next morning and increased repeatedly, even though DO level has a different level in sunny day and cloudy day. This results suggest that the most importance time of the control of DO in shrimp aquaculture farm is next early morning and if the DO concentration increased continuously which may be growing up the concentrations of NH₄/sup +/ and H₂S. The measured of pH and salinity were suitable to growth of shrimp. However, the level of ammonium and sulfur hydroxides produced from the sediments of shrimp aquaculture farms were 2.30 ppm and 0.075 ppm, respectively, which are exceeded to the concentration of guide line for the growth of shrimp. In the results of this study, we found it difficult to improve the water quality using of the present frame of shrimp aquaculture farms. Then, we can improved water quality of DO, NH₄/sup +/ and sediment quality of ORP, H₂S and also achieved down to the rate of shrimp fatal by changed the frame of shrimp aquaculture farms in the scale of laboratory.

  • PDF

Effect of addition of sweet potato on physiochemical properties of Kochujang (고구마를 이용한 고추장의 숙성 중 이화학적 특성 변화)

  • Park, Su-Ah;Kim, Dong-Han
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.538-546
    • /
    • 2016
  • Kochujang was prepared by replacement of rice (25%, control) with pumpkin or purple sweet potato by 0. 5, 10, and 15% (total addition ratio of rice and sweet potato=25% of sample). Effects of the addition of sweet potato on physiochemical properties of fermented Kochujang were investigated. Viable cells of yeast decreased in the sweet potato-added Kochujang at the later stage of fermentation, while there was no significant difference in the number of bacteria among the test groups. As the addition ratio sweet potato increased, ${\alpha}$-amylase activity increased while protease activity decreased. Hunter L, a, and b values of Kochujang prepared with purple sweet potato were lower than those with pumpkin sweet potato. Changes in ${\Delta}E$ value was greater in Kochujang prepared with pumpkin sweet potato than that with purple sweet potato. Oxidation-reduction potential and water activity were higher in sweet potato-Kochujang than control, but reducing sugar content was higher in control. Alcohol and amino-type nitrogen contents were higher in Kochujang prepared with pumpkin sweet potato than that with purple sweet potato, but it was not significant. Overall sensory acceptability was highest in Kochujang prepared with 10% of purple sweet potato while that with 15% pumpkin sweet potato was the least preferred.

Color Removal Efficiency for the Effluent of Activated Sludge Process for Pig Wastewater by TiO$_2$ Treatment System (TiO$_2$를 이용한 양돈장의 활성오니처리방류수의 탈색처리에 관한 연구)

  • 최희철;이덕수;권두중;강희설;곽정훈;최동윤;연규영;최영수;양창범
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 2003
  • These experiments were conducted to evaluate the efficiency of the color removal treatment system of pig wastewater by $TiO_2$. The results obtained are summarized as follow : 1 The color removal efficiency of effluent of activated sludge process by $TiO_2$ level were 59.7 and 52.5% for 1.0 and 2.0g/$\ell$ at 360 minute of operation time, respectively. 2. The color of pig wastewater was changed from 655 color unit(cu) to 146cu of the wastewater treatment of pH 5 at 300 minute of operation time. 3. The $H_2O_2$ level for color removal showed at 200mg/$\ell$ and in that level, the color removal efficiency was 52.5%. 4. The color removal efficiency of 365nm UV intensity was 29.4%, but 254nm of UV intensity was higher(50.1%) than 365nm for color removal.

  • PDF

Stabilization Performance Evaluation of Filter(pH) Using Ionic Water Generator (이온수기 필터(pH)의 안정화 성능평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. And there are various types of water. Ionic water generator is a system with special function, and can be classified as a medical device and should be manufactured after approval from the Food and Drug Administration. Basically ionized water is different from the packaged and stored water. When the tap water or ground water passes through the various filters of ionic water generator, it turns to the purified water of pH7 ~ 7.5 and we can electrolyze that water into anion and cation by diaphragm. And in negative electrode side, we can get alkaline water with calcium ($Ca^+$), potassium ($K^+$), magnesium ($Mg^+$), sodium ($Na^+$) for body. In general, we can change pH value from 5 to 9 of ionizer by controlling the level of electrolysis voltage in the ionizer. In general, 1stage (pH8), 2stage (pH8.5), 3stage (pH9), 4stage (pH9.5) are used as the alkaline ionized water, -1Stage (pH6.0), -2 stage (pH5.0) are used as the acidic water. But in early stage, the water that passed through filter was weakly alkaline water and that was problem. Therefore, when filter condition is stable, the pH and ORP value of water is different with the early one. the initial setting pH value of the ionizer was confirmed that changes significantly. In order to resolve this problem we need to wash filter for some period time and neutralize by acidification treatment of the filter.

Evaluation for Impacts of Nitrogen Source to Groundwater Quality in Livestock Farming Area

  • Lee, Gyeong-Mi;Park, Sunhwa;Kim, Ki-In;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Tae-Seung;Yun, Seong-Taek;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • We investigated 52 livestock farming complexes in Gyeong-Gi and Incheon provinces based on low, medium, and high livestock density and groundwater quality. The objective of this study was to evaluate a relationship between nitrate N concentration in groundwater and animal factors, such as livestock density and animal species. 2,200 groundwater samples for 3 years from 2012 to 2014 at Gyeong-Gi and Incheon provinces were collected and analyzed for pH, EC, DO, ORP, temperature, major anions and cations, such as $NO_3-N$, ${HCO_3}^-$, ${PO_4}^-$, ${SO_4}^{2-}$, $Cl^-$, $NH_4-N$, $K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$, T-N, and TOC. Average concentration of total N for generated load density was $23,973g\;day^{-1}\;km^{-2}$ for cattle, $51,551g\;day^{-1}\;km^{-2}$ for pig, and $52,100g\;day^{-1}\;km^{-2}$ for poultry. For animal feeding species, average ratio for generated load over discharge load was 16.1% for cattle, 7.8% for pig, and 7.1% for poultry. Therefore, cattle feeding region is highly vulnerable for water pollution compared to pig and poultry feeding areas. The concentrations of chloride, nitrate, and total N in the groundwater samples were higher at high animal farming regions than other regions. The average concentration of nitrate, and chloride in groundwater samples was $5.0mg\;L^{-1}$, $16.6mg\;L^{-1}$ for low livestock density, $6.9mg\;L^{-1}$, $17.7mg\;L^{-1}$ for medium livestock density and $7.6mg\;L^{-1}$, $22.7mg\;L^{-1}$ for high livestock density and total nitrogen (T-N) was $7.7mg\;L^{-1}$ for low livestock density, $9.4mg\;L^{-1}$ for medium livestock density, $10.7mg\;L^{-1}$ for high livestock density. In conclusion, based on this research, for managing groundwater quality near livestock farming regions, $Ca-(Cl+NO_3)$ group from the Piper diagram is more efficient than using 19 factors for water quality standard.

Characterization of PR-10 gene derived from highly resistant '93-3-98' pear inoculated with scab (Venturia nashicola) (배 검은별무늬병(Venturia nashicola) 고도 저항성 '93-3-98' 유래 PR-10 유전자의 특성)

  • Chun, Jae An;Kim, Se Hee;Cho, Kang Hee;Kim, Dae Hyun;Choi, In Myong;Shin, Il Sheob
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • A PyrcpPR-10 gene with differentially expressed was isolated by using the suppression subtractive hybridization assay between '93-3-98' (highly resistant against scab caused by Venturia nashicola) and 'Sweat Skin'(highly susceptible) and analyzed the expression pattern according to organs and cultivars. The full length of PyrcpPR-10 was cloned as 743bp with 480bp's ORP, and was determined to encode a protein of 159 amino acid residues. On analyzing PyrcpPR-10 gene sequence compared with resistant and susceptible cultivars, 'Hwangsilri' (resistant), 'Gamcheonbae' (moderately resistant), 'Wonhwang' (moderately susceptible), 'Niitaka' (highly susceptible), and 'Sweat Skin' (highly susceptible) had identical gene sequence but 'Bartlett' (highly resistant) showed partly different sequences. The deduced amino acid sequence showed 64 ~ 98% homology and had the GXGGXG motif to known amino acid of other plants PR-10 by the BLAST X analysis. Among several organs or tissues, petal was showed highest expression level of PyrcpPR-10 gene followed by leaf, floral axis, bud, and bark. The expression level of PyrcpPR-10 gene was dramatically increased at 24 hr after inoculation in all cultivars and also up-regulated in accordance with resistant degree of cultivars. While resistant cultivars ('Bartlett', '93-3-98', and 'Hwangsilri') induced relatively high expression level of PyrcpPR-10 gene, susceptible cultivars ('Niitaka', and 'Sweat Skin') showed low expression level. PyrcpPR-10 gene is assumed that it is directly connected with defense mechanisms to pear scab.

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern of Jeonnam (전남 해안 LPG 저장공동 유출수와 주변 지하수의 수질특성)

  • Lee, Jin-Yong;Choi, Mi-Jung;Kim, Hyun-Jung;Cho, Byung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.33-44
    • /
    • 2009
  • Water curtain of an underground LPG storage cavern is a facility to prevent leakage of high pressure gases, for which groundwater should flow freely towards the cavern and groundwater level also must be stably maintained. In this study, in order to evaluate qualities of seepage water and surrounding groundwater of an underground LPG storage cavern in Yeosu, 4 rounds of samplings, field measurements and laboratory analyses (February, May, August, October of 2007) were conducted. According to field measurements, pH was weak acidic to neutral but it gradually increased with time. Electrical conductivity (EC) of groundwater near a salt stack showed very high values between 10.47 and 38.50 mS/cm. Dissolved oxygen (DO) showed a very wide range of 0.20~8.74 mg/L and a mean of oxidation-reduction potential (ORP) was 159 mV, which indicated an oxidized condition. Levels of $Fe^{2+}$ and $Mn^{2+}$ were mostly less than 3 mg/L. All of seepage waters showed a Na-Cl type while only groundwater near the salt stack showed a Na-Cl type with a high total dissolved solid. The other groundwaters exhibited typical $Ca-HCO_3$ types. Levels of aerobic bacteria were mostly very high (573-39,520 CFU/mL). Based on the analyses of these hydrochemistry and biological characteristics, it is concluded that there are no particular problems in groundwater and seepage water, which not causing a trouble in the cavern operation. However, both for control of bio-clogging and for sustainable operation of the water curtain system, a regular hydrochemical and microbiological monitoring is required for the seepage water and surrounding groundwater.