• Title/Summary/Keyword: ORIGEN2

Search Result 60, Processing Time 0.045 seconds

Verification of MCNP/ORIGEN-2 Model and Preliminary Radiation Source Term Evaluation of Wolsung Unit 1 (월성 1호기 MCNP/ORIGEN-2 모델 검증 및 예비 선원항 계산)

  • Noh, Kyoungho;Hah, Chang Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.21-34
    • /
    • 2015
  • Source term analysis should be carried out to prepare the decommissioning of the nuclear power plant. In the planning phase of decommissioning, the classification of decommissioning wastes and the cost evaluation are performed based on the results of source term analysis. In this study, the verification of MCNP/ORIGEN-2 model is carried out for preliminary source term calculation for Wolsung Unit 1. The inventories of actinide nuclides and fission products in fuel bundles with different burn-up were obtained by the depletion calculation of MCNPX code modelling the single channel. Two factors affecting the accuracy of source terms were investigated. First, the neutron spectrum effect on neutron induced activation calculation was reflected in one-group microscopic cross-sections of relevant radio-isotopes using the results of MCNP simulation, and the activation source terms calculated by ORIGEN-2 using the neutron spectrum corrected library were compared with the results of the original ORIGEN-2 library (CANDUNAU.LIB) in ORIGEN-2 code package. Second, operation history effect on activation calculation was also investigated. The source terms on both pressure tubes and calandria tubes replaced in 2010 and calandria tank were evaluated using MCNP/ORIGEN-2 with the neutron spectrum corrected library if the decommissioning wastes can be classified as a low level waste.

LCS-ORIGEN2 연결 프로그램 개발 및 활용

  • 신희성;신운철;길충섭;송태영;우재권;하석중;박원석;심형진
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.143-148
    • /
    • 1998
  • LCS와 ORIGEN2의 연결 프로그램 MONO를 개발하여 연소시간에 따른 가속기미임계로의 핵특성 변화를 분석할 있는 LCS-MONO-ORIGEN2 코드시스템을 구축하였다. 몇 가지 타입의 미임계로를 대상으로 LCS-MONORIGEN2 코드시스템의 성능시험을 수행하였다. 용융염 핵연료 및 집합체형 핵연료 미임계로에 대한 계산은 문제없이 수행되었다 또한 토륨/우라늄-233 핵연료 미임계로에 대한 연소시간에 따른 Keff 변화는 외국기관의 계산결과와 유사하게 나타났다.

  • PDF

Development of a One-Group Cross Section Data Base of the ORIGEN2 Computer Code for Research Reactor Applications (ORIGEN2 전산코드를 위한 연구로용 1군 단면적 데이타베이스 개발)

  • Kim, Jung-Do;Gil, Choong-Sub;Lee, Jong-Tai;Hwang, Won-Guk
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • A one-group cross section data base of the ORIGEN2 computer code was developed for research reactor applications. For this, ENDF/B-IV and -V data were processed using the NJOY code system into 69-group data. The burnup-dependent weighting spectra for KMRR were calculated with the WIMS-KAERI computer code, and then the 69-group data were collapsed to one-group using the spectra. The ORIGEN2-predicted burnup-dependent acti-nide compositions of KMRR spent fuel using the newly developed data base show a good agreement with the results of detailed multigroup transport calculation. In addition, the burnup characteristics of KMRR spent fuel was analyzed with the new data base.

  • PDF

Estimation of Radioactive Inventory for a major component of Reactor in Decommissioning (해체시 원자로 주요 구성품에 대한 방사능 재고량 평가)

  • Hak-Soo Kim;Ki-Doo Kang;Kyoung-Doek Kim;Chan-Woo Jeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • DORT and ORIGEN2 code were used for calculation of neutron flux and inventory in reactor pressure vessel(RPV) of Kori unit-1, To calculate neutron flux using DORT code, the reactor was divided into 94 mesh from the center of core to RPV and from 0 to 45 degree along the azimuth. The cross-sections of main nuclides were recalculated using neutron flux in the RPV region. The results showed that 95% of the total activity in RPV came from the nuclides of $^{55}$ Fe, $^{60}$ Co, $^{59}$ Ni and $^{63}$ Ni. And the total activity with cooling of more than 50 years after decommissioning was no more than 0.2% of at the time of shutdown. Considering the weight of RPV is 210 tons, the initial total activity of RPV reached 5.25${\times}$10$^{6}$ GBq. To verify results of ORIGEN2 calculation, comparison between calculated and measured value at RPV of Kori unit-1 was peformed. The comparison results showed a good agreement.

  • PDF

Assessment of Post-LOCA Radiation Fields in Service Building Areas for Wolsong 2, 3, and 4 Nuclear Power Plants (월성 원자력 발전소 2,3,4호기에서의 LOCA 사고후 보조건물의 방사선장 평가)

  • Jin, Yung-Kwon;Kim, Yong-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.53-64
    • /
    • 1995
  • The radiation fields following the large loss of coolant accident (LOCA) have been assessed for the vital areas in the service building of Wolsong 2, 3, and 4 nuclear power plants. The ORIGEN2 code was used in calculating the fission product inventories in the fuel. The source terms were based upon the activity released following the dual failure accident scenario, i.e., a LOCA followed by impaired emergency core cooling (ECC). Configurations of the reactor building, the service building, and the ECC system were constructed for the QAD-CG calculations. The dose rates and the time-integrated doses were calculated for the time period of upto 90 days after the accident. The results showed that the radiation fields in the vital access areas were found to be sufficiently low. Some areas however showed relatively high radiation fields that may require limited access.

  • PDF

A Comparative Study on Effective One-Group Cross-Sections of ORIGEN and FISPACT to Calculate Nuclide Inventory for Decommissioning Nuclear Power Plant

  • Cha, Gilyong;Kim, Soonyoung;Lee, Minhye;Kim, Minchul;Kim, Hyunmin
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.99-106
    • /
    • 2022
  • Background: The radionuclide inventory calculation codes such as ORIGEN and FISPACT collapse neutron reaction libraries with energy spectra and generate an effective one-group cross-section. Since the nuclear cross-section data, energy group (g) structure, and other input details used by the two codes are different, there may be differences in each code's activation inventory calculation results. In this study, the calculation results of neutron-induced activation inventory using ORIGEN and FISPACT were compared and analyzed regarding radioactive waste classification and worker exposure during nuclear decommissioning. Materials and Methods: Two neutron spectra were used to obtain the comparison results: Watt fission spectrum and thermalized energy spectrum. The effective one-group cross-sections were generated for each type of energy group structure provided in ORIGEN and FISPACT. Then, the effective one-group cross-sections were analyzed by focusing on 59Ni, 63Ni, 94Nb, 60Co, 152Eu, and 154Eu, which are the main radionuclides of stainless steel, carbon steel, zircalloy, and concrete for decommissioning nuclear power plant (NPP). Results and Discussion: As a result of the analysis, 154Eu and 59Ni may be overestimated or underestimated depending on the code selection by up to 30%, because the cross-section library used for each code is different. When ORIGEN-44g, -49g, and -238g structures are selected, the differences of the calculation results of effective one-group cross-section according to group structure selection were less than 1% for the six nuclides applied in this study, and when FISPACT-69g, -172g, and -315g were applied, the difference was less than 1%, too. Conclusion: ORIGEN and FISPACT codes can be applied to activation calculations with their own built-in energy group structures for decommissioning NPP. Since the differences in calculation results may occur depending on the selection of codes and energy group structures, it is appropriate to properly select the energy group structure according to the accuracy required in the calculation and the characteristics of the problem.