• Title/Summary/Keyword: ORAC method

Search Result 12, Processing Time 0.015 seconds

Assessment of Validation Method for Bioactive Contents of Fermented Soybean Extracts by Bioconversion and Their Antioxidant Activities (생물전환된 품종별 대두 발효물의 주요 지표성분 함량 및 분석법 검증과 항산화 활성 평가)

  • Jung, Tae-Dong;Shin, Gi-Hae;Kim, Jae-Min;Oh, Ji-Won;Choi, Sun-Il;Lee, Jin-Ha;Lee, Sang Jong;Heo, In Young;Park, Seon Ju;Kim, Hyun Tae;Kang, Beom Kyu;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.680-689
    • /
    • 2016
  • The present study evaluated the validation method for isoflavone contents of fermented soybean extracts by bioconversion as well as their antioxidant activities. Our results show that the total isoflavone contents of non-fermented and fermented soybean extract ranged between 119.8 to $637.7{\mu}g/g$ and between 567.3 to $2,074.6{\mu}g/g$, respectively. Moreover, fermented soybean extracts had higher contents of isoflavone aglycones, including daidzein, glycitein, and genistein than non-fermented soybean extracts as well as lower contents of isoflavone glucosides such as daidzin, glycitin, and genistin. FRAP and ORAC values ranged between 0.15 to 0.22 and between 195.24 to $753.79{\mu}M$ Trolox equivalents/g in non-fermented and fermented soybean extracts, respectively. These results indicate that fermented soybean extracts had higher total isoflavone contents and antioxidant activities than non-fermented soybean extracts. Bioconversion process in this study may have the potential to produce isoflavone-enriched natural antioxidant agents with high added value from soybean matrices.

The Effect of Vinegar Fermentation on the Nutritional Quality of Lotus Flower Fermented Product

  • Nam, Mikyung;Chrysta, Maynanda Brigita;Lee, Eunsuk;Choi, Wonsik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • All the parts of lotus, including the seed, rhizome, leaf, stalk, petal, anther, pericarp, and fruit receptacle, have been used in traditional medicine system as a health beneficial supplement. However the most usually used from lotus plant is only the root. Therefore in this study, it will be discussed more the utilization of other parts of the lotus, namely the flower of lotus. The petals and stamens of lotus actually are also rich in bioactive components such as flavonoids and alkaloids, are used in the treatment of tissue inflammation, cancer, skin disease, and also for us as antidotes. One of the biotechnological process that can be used to improve the nutritional content, sensory, and also antioxidant activities is fermentation process. The final product desired from the fermentation process in this study is vinegar. The microbial strain powder used is Uinkin fermented powder with three variations of fermentation. The variations given in this study were initial sugar 32%, 24%, and 14% with the same fermentation temperature, $35^{\circ}C$ for 3 months. The results obtained showed that the pH value and sugar content of products during the fermentation process were decreasing during the fermentation process, with total polyphenol content of $283.7{\pm}97.6mg/100g\;QAE$, and total flavonoid content of $3.3{\pm}0.0mg/100g\;QAE$. For the DPPH radical scavenging ability of the fermentation product also increased in a concentration dependent manner, with ORAC activity of the product showed a high activity of $20.7{\pm}0.41{\mu}M$ TE. Therefore, fermentation process can be the one of method for improving the product. The efficiency of lotus flower vinegar fermentation can be reached with an initial sugar condition of 25% (sample B).