• Title/Summary/Keyword: OPNET Modeler

Search Result 29, Processing Time 0.021 seconds

A Study on TCP Performance Improvement Method Using WLAN Handoff Implementation by OPNET Simulator (OPNET 시뮬레이터의 무선랜 핸드오프 구현과 이를 기반으로 한 TCP 성능 향상 기법에 관한 연구)

  • Jung Se won;Lee Chae-woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1189-1199
    • /
    • 2004
  • In this paper, we explain the development procedure for a WLAN (IEEE 802.l1b Wireless Lan) handoff simulator using OPNET Modeler 9.0 and analyze the handoff performance when TCP and UDP traffic is applied. Because the BSS (Basic Service Set) is set only once at the beginning of a simulation in WLAN model supported by OPNET Modeler 9.0, the discontinuation of the communication between MS (Mobile Station) and AP (Access Point) is occurred by the migration of the MS from one BSS to another. We implement a handoff simulator based on this WLAN model and analyze handoff performance in various scenarios Also, we propose a new handoff algorithm which prevents TCP timeout by analyzing the problems of the handoff using the simulator.

End-to-end Packet Statistics Analysis using OPNET Modeler Wireless Suite (OPNET Modeler Wireless Suite를 이용한 종단간 패킷 통계 분석)

  • Kim, Jeong-Su
    • The KIPS Transactions:PartC
    • /
    • v.18C no.4
    • /
    • pp.265-278
    • /
    • 2011
  • The objective of this paper is to analyze and characterize end-to-end packet statistics after modeling and simulation of WiFi (IEEE 802.11g) and WiMAX (IEEE 802.16e) of a virtual wireless network using OPNET Modeler Wireless Suite. Wireless internal and external network simulators such as Remcom's Wireless InSite Real Time (RT) module, WinProp: W-LAN/Fixed WiMAX/Mobile WiMAX, and SMI system, are designed to consider data transfer rate based on wireless propagation signal strength. However, we approached our research in a different perspective without support for characteristic of these wireless network simulators. That is, we will discuss the purpose of a visual analysis for these packets, how to receive each point packets (e.g., wireless user, base station or access point, and http server) through end-to-end virtual network modeling based on integrated wired and wireless network without wireless propagation signal strength. Measuring packet statistics is important in QoS metric analysis among wireless network performance metrics. Clear packet statistics is an especially essential metric in guaranteeing QoS for WiMAX users. We have found some interesting results through modeling and simulation for virtual wireless network using OPNET Modeler Wireless Suite. We are also able to analyze multi-view efficiency through experiment/observation result.

OPNET Modeler를 사용한 ITS 망의 설계 검증

  • 김윤배
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.22-24
    • /
    • 2000
  • ITS는 기존의 교통체계에 첨단 정보통신기술을 접목시킴으로서 교통체계의 효율성과 안정성을 재고하기 위한 새로운 교통체계이다. 수도권 지역에 대하여 ITS의 관련기술 중 핵심 기술인 DSRC(Dedicated Short Range Communication) 망의 최적구조, 노변장치와 지역서버간, 지역서버와 중앙서버간의 최적 망 구조를 설계하고, 이 망 구조에 대한 트래픽을 산출하며 이를 기초로 OPNET Modeler를 사용하여 시뮬레이션을 수행하여 노변장치 - 지역서버간의 통신망구조 설계와 지역서버 - 중앙서버간의 통신망구조 설계설계에 대한 검증을 수행하였다.

  • PDF

Effective Routing Protocol Implementation Framework on Riverbed (OPNET) Modeler and its Example for AntHocNet (Riverbed (OPNET) Modeler의 효과적인 라우팅 프로토콜 추가 프레임워크 및 이를 이용한 AntHocNet 라우팅 구현)

  • Kim, Kwangsoo;Lee, Cheol-Woong;Shin, Seung-hun;Roh, Byeong-hee;Roh, Bongsoo;Han, Myoung-hun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.974-985
    • /
    • 2016
  • Riverbed Modeler, which is a commercial packet-level discrete event simulator is used to model, design, and simulate complicated communication protocols and large-scale network. Riverbed Modeler got credit for its reliability in field of network simulation. In the MANET simulation environment using Riverbed Modeler, it is very complicated to add a new routing protocol into existing architecture of routing protocols because it is required lots of modifications of protocol recognition. In this paper, we propose Routing Adding Framework which can reduce errors or mistakes during modifying the existing routing support architecture. Routing Adding Framework is provided as a adapter API for protocol recognition. and it is only minimum modifications for protocol identifiers when a new routing protocol is added to the child process of manet_mgr process which manages routing protocols for IP layer. With Routing Adding Framework, we can reduce less than half modification. Then, we shows an example of implementation of a hybrid routing protocol AntHocNet using Routing Adding Framework, and we verify its design and application of the Routing Adding Framework by obtaining simulation result with similar result given by AntHocNet.

Effect of Energy Saving and Delay on Burst Assemble and Traffic Pattern in OBS Networks with Sleeping Mode (수면 모드를 사용하는 OBS 망에서 트래픽 패턴 및 버스트 어셈블이 에너지 절감과 지연시간에 미치는 영향 분석)

  • Kang, Dong-Ki;Yang, Won-Hyuk;Lee, Jae-Young;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.111-119
    • /
    • 2011
  • As Green-IT has attracted a lot of attention in recent years, many researches have been interested in reducing the energy consumption of network equipments. In this paper, we analyze the energy saving ratio and delay performance according to various traffic patterns and burst assemble algorithms in OBS network with sleeping mode. To do this, we design the traffic generators, which are based on exponential distribution and Pareto distribution, and the router model, which has the time based and length based burst assemble algorithms by using OPNET modeler. Through OPNET simulator, we evaluate the energy saving performance in terms of the sleeping time, the number of transitions and packet delay.

Analysis of MANET Protocols Using OPNET (OPNET을 이용한 MANET 프로토콜 분석)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.87-97
    • /
    • 2009
  • A Mobile Ad hoc Network (MANET) is characterized by multi-hop wireless connectivity, frequently changing network topology with mobile nodes and the efficiency of the dynamic routing protocol plays an important role in the performance of the network. In this paper, the performance of five routing protocols for MANET is compared by using OPNET modeler: AODV, DSR, GRP, OLSR and TORA. The various performance metrics are examined, such as packet delivery ratio, end-to-end delay and routing overhead with varying data traffic, number of nodes and mobility. In our simulation results, OLSR shows the best performance in terms of data delivery ratio in static networks, while AODV has the best performance in mobile networks with moderate data traffic. When comparing proactive protocols (OLSR, GRP) and reactive protocols (AODV, DSR) with varying data traffic in the static networks, proactive protocols consistently presents almost constant overhead while the reactive protocols show a sharp increase to some extent. When comparing each of proactive protocols in static and mobile networks, OLSR is better than GRP in the delivery ratio while overhead is more. As for reactive protocols, DSR outperforms AODV under the moderate data traffic in static networks because it exploits caching aggressively and maintains multiple routes per destination. However, this advantage turns into disadvantage in high mobility networks since the chance of the cached routes becoming stale increases.

  • PDF

Performance Comparison of OLSR and AODV Routing Protocols Using OPNET (OPNET을 이용한 OLSR과 AODV 라우팅 프로토콜 성능 비교)

  • Wang, Ye;Zhang, Xiao-Lei;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2009
  • A Mobile Ad hoc network(MANET) is a network consisting of a set of wireless mobile nodes, which communicate with each other without centralized control or established infrastructure. In this paper, to obtain a better understanding of AODV(Ad hoc On-Demand Distance Vector Routing Protocol)and OLSR(Optimized Link State Routing Protocol) routing protocols, different performances are simulated and analyzed using OPNET modeler 14.5 with the various performance metrics, such as packet delivery ratio, end-to-end delay and routing overhead. As a conclusion, in static analysis, the routing overhead of OLSR is affected by the number of nodes, but not data traffic. In AODV case, it is affected by both data traffic and number of nodes. In mobility analysis, routing overhead is not greatly affected by mobility speed in AODV and OLSR, and the PDR(Packet Delivery Ration) of OLSR is decreased as the node speed increased, while AODV is not changed. AS to delay, AODV is always higher than OLSR in both static and nobility cases.

  • PDF

Ethernet Algorithm for Building Network Integration Using TCP/IP

  • Chang Kyung-Bae;Shim Il-Joo;Park Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Problems like poor security, transfer delay or packet loss occur while building network systems that are applied with TCP/TP integrate with data network systems. To solve this problem, this paper proposes the Separated Ethernet, which can give priority to the system, and by using the OPNET Modeler simulator, we will verify its performances.

Impact Analysis of Traffic Patterns on Energy Efficiency and Delay in Ethernet with Rate Adaptation (적응적 전송률 기법을 이용한 이더넷에서 트래픽 패턴이 에너지 절약률 및 지연 시간에 미치는 영향)

  • Yang, Won-Hyuk;Kang, Dong-Ki;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1034-1042
    • /
    • 2010
  • As many researchers have been interested in Green IT, Energy Efficient Ethernet(EEE) with rate adaptation has recently begun to receive many attention. However, the rate adaptation scheme can have different energy efficiency and delay according to the characteristics of various traffic patterns. Therefore, in this paper, we analyze the impact of different traffic patterns on the energy efficiency and delay in Ethernet with rate adaptation. To do this, firstly we design a rate adaptation simulator which consists of Poisson based traffic generator, Pareto distribution based ON-OFF generator and Ethernet node with rate adaptation by using OPNET Modeler. Using this simulator, we perform the simulation in view of the total number of switching, transmission rate reduction, energy saving ratio and average queueing delay. Simulation results show that IP traffic patterns with high self-similarity affect the number of switching, rate reduction and energy saving ratio. Additionally, the transition overhead is caused due to the high self-similar traffic.

Scheduling Algorithm for Military Satellite Networks using Dynamic WDRR(Weighted Deficit Round Robin) (군사용 위성통신망을 위한 동적 WDRR기반의 스케줄링 알고리즘)

  • Lee, Gi-Yeop;Song, Kyoung-Sub;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.196-204
    • /
    • 2013
  • In this paper, a scheduling algorithm is proposed for military satellite networks to improve QoS(Quality of Service) based on WDRR(Weighted Deficit Round Robin) method. When the packet size that has been queued to be larger, the proposed scheme DWDRR(Dynamic WDRR) method give appropriate additional quantum using EWMA(Exponentially Weighted Moving Average). To demonstrate an usefulness of proposed algorithm using OPNET modeler that built the simulation environment, reliability and real-time availability of the proposed algorithm is analyzed. The simulation results show an availability of proposed scheme in terms of reduce queuing delay and packet drop rate compared and analyzed the existing algorithms WRR(Weighted Round Robin), DRR(Deficit Round Robin) and WDRR with DWDRR.