• Title/Summary/Keyword: OPF

Search Result 143, Processing Time 0.018 seconds

Factors Affecting Wet-Paddy Threshing Performance (탈곡기의 제작동요인이 벼의생탈곡성능에 미치는 영향)

  • 남상일;정창주;류관희
    • Journal of Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 1980
  • Threshing operation may be one of the most important processes in the paddy post-production system as far as the grain loss and labor requirement are concerned . head-feeding type threshers commercially available now in Korea originally were developed for threshing dry paddy in the range of 15 to 17 % in wet basis. However, threshing wet-paddy with the grain moisture content above 20 % has been strongly recommended, especially for new high-yielding Indica -type varieties ; (1) to reduce high grain loss incurred due to the handling operations, and (2) to prevent the quantitative and qualitative loss of milled -rice when unthreshed grains are rewetted due to the rainfall. The objective of this study were to investigate the adaptability of both a head-feeding type thresher and a throw-in type thresher to wet-paddy , and to find out the possiblilities of improving the components of these threshers threshing. Four varieties, Suweon 264 and Milyang 24 as Tongil sister line varieties, minehikari and Jinhueng as Japonica-type varieties, were used at the different levels of the moisture content of grains. Both the feed rate and the cylinder speed were varied for each material and each machine. The thresher output quality , composition of tailing return, and separating loss were analyzed from the sampels taken at each treatment. A separate experiment for measurement opf the power requirement of the head-feeding type thresher was also performed. The results are summarized as follows : 1. There was a difference in the thresher output quality between rice varieties. In case of wet-paddy threshing at 550 rpm , grains with branchlet and torn heads for the Suweon 264 were 12 % and 7 % of the total output in weight, respectively, and for the Minehikari 4.5 % and 2 % respectively. In case of dry paddy threshing , those for the Suweon 264 were 8 % and 5% , and for the Minehikari 4% and 1% respectively. However, those for the Milyang 23 , which is highly susceptable to shattering, were much lower with 1 % and 0.5% respectively, regardless of the moisture content of the paddy. Therefore, it is desirable to breed rice varieties of the same physical properties as well as to improve a thresher adaptable to all the varieties. Torn heads, which increased with the moisture content of rall the varieties except the Milyang 23 , decreased as the cylinder speed increased, but grains with branchlet didnt decrease. The damaged kernels increased with the cylinder speed. 3. The thresher output quality was not affected much by the feed rate. But grains with branchlet and torn heads increased slightly with the feed rate for the head-feeding type thresher since higher resistance lowered at the cylinder speed. 4. In order to reduce grains with branchlet and torn heads in wet-paddy threshing , it is desirable to improve the head-feeding type thresher by developing a new type of cylinder which to not give excess impact on kernels or a concave which has differenct sizes of holes at different locations along the cylinder. 5. For the head-feeding type thresher, there was a difference in separating loss between the varieties. At the cylinder speed of 600 rpm the separating losses for the Minehikari and the Suweon 264 were 1.2% and 0.6% respectively. The separating loss of the head-feeding type thresher was not affected by the moisture content of paddy while that of the Mini-aged thresher increased with the moisture content. 6. From the analysis of the tailings return , to appeared that the tailings return mechanism didn't function properly because lots of single grains and rubbishes were unnecessarily returned. 7. Adding a vibrating sieve to the head-feeding type thresher could increase the efficiency of separation. Consequently , the tailing return mechanism would function properly since unnecessary return could be educed greatly. 8. The power required for the head-feeding type thresher was not affected by the moisture content of paddy, but the average power increased linearly with the feed rate. The power also increased with the cylinder speed.

  • PDF

Crystal Structures of Fully Dehydrated $Ca^{2+}$-Exchanged Zeolite X, $Ca_{46}-X$, and $Ca^{2+}$ and $K^+$-Exchanged Zeolite X, $Ca_{32}K_{28}-X$ ($Ca^{2+}$ 이온으로 완전히 치환된 제올라이트 X, $Ca_{46}-X$$Ca^{2+}$ 이온과 $K^+$ 이온으로 치환된 제올라이트 X, $Ca_{32}K_{28}-X$를 완전히 진공 탈수한 결정구조)

  • Jang, Se Bok;Song, Seong Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 1995
  • The crystal sructures of $X(Ca_{46}Al_{92}Si_{100}O_{384})$ and $Ca_{32}K_{28}-X(Ca_{32}K_{28}Al_{92}Si_{100}O_{384})$ dehydrated at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ Their structures were refined to the final error indices, R_1=0.096,\;and\;R_2=0.068$ with 166 reflections, and R_1=0.078\;and\;R_2=0.056$ with 130 reflections, respectively, for which I > $3\sigma(I).$ In dehydrated $Ca_{48}-X,\;Ca^{2+}$ ions are located at two different sites opf high occupancies. Sixteen $Ca^{2+}$ ions are located at site I, the centers of the double six rings $(Ca(1)-O(3)=2.51(2)\AA$ and thirty $Ca^{2+}$ ions are located at site II, the six-membered ring faces of sodalite units in the supercage. Latter $Ca^{2+}$ ions are recessed $0.44\AA$ into the supercage from the three O(2) oxygen plane (Ca(2)-O(2)= $2.24(2)\AA$ and $O(2)-Ca(2)-O(2)=119(l)^{\circ}).$ In the structure of $Ca_{32}K_{28}-X$, all $Ca^{2+}$ ions and $K^+$ ions are located at the four different crystallographic sites: 16 $Ca^{2+}$ ions are located in the centers of the double six rings, another sixteen $Ca^{2+}$ ions and sixteen $K^+$ ions are located at the site II in the supercage. These $Ca^{2+}$ ions adn $K^+$ ions are recessed $0.56\AA$ and $1.54\AA$, respectively, into the supercage from their three O(2) oxygen planes $(Ca(2)-O(2)=2.29(2)\AA$, $O(2)-Ca(2)-O(2)=119(1)^{\circ}$, $K(1)-O(2)=2.59(2)\AA$, and $O(2)-K(1)-O(2)=99.2(8)^{\circ}).$ Twelve $K^+$ ions lie at the site III, twofold axis of edge of the four-membered ring ladders inside the supercage $(K(2)-O(4)=3.11(6)\AA$ and $O(1)-K(2)-O(1)=128(2)^{\circ}).$

  • PDF

Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia (인도네시아 오일 팜 바이오매스 잠재량 평가)

  • Ahn, Byoung-Jun;Han, Gyu-Seoung;Choi, Don-Ha;Cho, Sung-Taig;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.231-243
    • /
    • 2014
  • In this study, the potential of biomass, which is generated from oil palm cultivation and crude palm oil (CPO) production of Indonesia was assessed in the aspect of energy content. The types of oil palm biomass were classified on the basis of the cultivation stage and the CPO production stage. In the cultivation stage, biomass is considered to be produced from its' root, trunk and frond. Other possible biomass resources such as empty fruit bunch (EFB), palm kernel shell (PKS) and fiber were included in the CPO production stage. As results, total biomass from damaged plantation area of Indonesia was estimated to be annually from 3 million to 16 million tons in 2011. From CPO mills, approximately 49 million tons/yr of biomass residues were estimated to be annually occurred. Their total energy content from each biomass source in cultivation stage was analyzed to be from 593,000 to 3,197,000 TOEs in terms of gross calorific value. In the case of CPO mills, around 22.7 million TOEs was estimated to be potential energy producible by biomass based on gross calorific value of dry basis. If moisture content considered, net calorific value was analyzed to be decreased to 16.3 million TOEs. Based on the results, the total energy contents of all oil palm biomass were estimated to be up to 25,919,000 TOE in terms of gross calorific value. CPO : Crude Palm Oil, EFB : Empty Fruit Bunch, FFB: Fresh Fruit Bunch, PKS : Palm Kernel Shell, OPF : Oil Palm Frond, PKOC : Palm Kernel Oil Cake, ISPO : Indonesia Sustainable Palm Oil Commission, TOE : Tone of Oil Equivalent.